材料科学
钝化
光电流
阳极氧化
分解水
表面状态
化学工程
光电子学
电解质
光电化学电池
X射线光电子能谱
吸附
光电效应
表面改性
作者
Fan Li,Jie Jian,Youxun Xu,Wei Liu,Qian Ye,Fan Feng,Can Li,Lichao Jia,Hongqiang Wang
摘要
Tantalum nitride (Ta3N5) is a promising photoanode material for photoelectrochemical (PEC) water splitting, while the Ta3N5/Ta photoanode synthesized via general thermal oxidation and nitridation on a Ta foil method usually has serious carrier recombination at the surface, which usually reduces the PEC activities. Herein, we demonstrate an efficient strategy of decorating pyridine, a small organic molecule at the surface of the Ta3N5/Ta photoanode, to alleviate the surface recombination. Such decoration yields a stable photocurrent density of 4.4 mA cm−2 at 1.23 VRHE under AM 1.5G (air mass 1.5 global, 100 mW cm−2) simulated sunlight, which is about 1.4 times higher than that of Ta3N5/Ta without modification, and the photocurrent density still remained ∼100% of its original value after a 5 h stability test. Further characterization of the incident photon-to-current conversion efficiency and absorbed photon-to-current efficiency of the pyridine/Ta3N5/Ta photoanode showed a significant increase to 62% and 72% at 500 nm, respectively. The enhanced pyridine/Ta3N5/Ta PEC performance can be attributed to minimizing the density of nitrogen vacancies due to the passivation of pyridine grafting, which results in the decreased recombination centers and improved charge separation efficiency at the surface. We thus believe that our study of surface passivation by using small organic molecules provides an alternative to address the surface recombination of Ta3N5 based photoelectrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI