Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst

催化作用 氨生产 化学工程 过渡金属 反键分子轨道 电子转移 氮化物 无机化学 材料科学 化学 光化学 纳米技术 电子 有机化学 物理 图层(电子) 原子轨道 工程类 量子力学
作者
Tian‐Nan Ye,Sang‐Won Park,Yangfan Lu,Jiang Li,Masato Sasase,Masaaki Kitano,Tomofumi Tada,Hideo Hosono
出处
期刊:Nature [Springer Nature]
卷期号:583 (7816): 391-395 被引量:551
标识
DOI:10.1038/s41586-020-2464-9
摘要

Ammonia (NH3) is pivotal to the fertilizer industry and one of the most commonly produced chemicals1. The direct use of atmospheric nitrogen (N2) had been challenging, owing to its large bond energy (945 kilojoules per mole)2,3, until the development of the Haber–Bosch process. Subsequently, many strategies have been explored to reduce the activation barrier of the N≡N bond and make the process more efficient. These include using alkali and alkaline earth metal oxides as promoters to boost the performance of traditional iron- and ruthenium-based catalysts4–6 via electron transfer from the promoters to the antibonding bonds of N2 through transition metals7,8. An electride support further lowers the activation barrier because its low work function and high electron density enhance electron transfer to transition metals9,10. This strategy has facilitated ammonia synthesis from N2 dissociation11 and enabled catalytic operation under mild conditions; however, it requires the use of ruthenium, which is expensive. Alternatively, it has been shown that nitrides containing surface nitrogen vacancies can activate N2 (refs. 12–15). Here we report that nickel-loaded lanthanum nitride (LaN) enables stable and highly efficient ammonia synthesis, owing to a dual-site mechanism that avoids commonly encountered scaling relations. Kinetic and isotope-labelling experiments, as well as density functional theory calculations, confirm that nitrogen vacancies are generated on LaN with low formation energy, and efficiently bind and activate N2. In addition, the nickel metal loaded onto the nitride dissociates H2. The use of distinct sites for activating the two reactants, and the synergy between them, results in the nickel-loaded LaN catalyst exhibiting an activity that far exceeds that of more conventional cobalt- and nickel-based catalysts, and that is comparable to that of ruthenium-based catalysts. Our results illustrate the potential of using vacancy sites in reaction cycles, and introduce a design concept for catalysts for ammonia synthesis, using naturally abundant elements. Ammonia is synthesized using a dual-site approach, whereby nitrogen vacancies on LaN activate N2, which then reacts with hydrogen atoms produced over the Ni metal to give ammonia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
哈哈完成签到 ,获得积分10
7秒前
临兵者完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
柴yuki完成签到 ,获得积分10
15秒前
桃子完成签到 ,获得积分10
18秒前
20秒前
Ttimer发布了新的文献求助30
26秒前
吃的饱饱呀完成签到 ,获得积分10
28秒前
39秒前
量子星尘发布了新的文献求助10
45秒前
坚强志泽完成签到 ,获得积分10
45秒前
龙猫爱看书完成签到,获得积分10
53秒前
57秒前
59秒前
1分钟前
1分钟前
小帮手发布了新的文献求助10
1分钟前
席康发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
四月发布了新的文献求助10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
姜丝罐罐n完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
Sean完成签到 ,获得积分10
1分钟前
炙热的夜雪完成签到 ,获得积分10
1分钟前
1分钟前
淡然完成签到 ,获得积分10
1分钟前
席康完成签到 ,获得积分10
1分钟前
马东完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lily发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789212
求助须知:如何正确求助?哪些是违规求助? 5717008
关于积分的说明 15474363
捐赠科研通 4917123
什么是DOI,文献DOI怎么找? 2646783
邀请新用户注册赠送积分活动 1594446
关于科研通互助平台的介绍 1548914