亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
24秒前
Akim应助平淡的洪纲采纳,获得10
24秒前
27秒前
29秒前
ster223发布了新的文献求助10
30秒前
38秒前
42秒前
婉莹完成签到 ,获得积分10
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1933644015完成签到,获得积分10
1分钟前
1分钟前
幸运小狗完成签到,获得积分20
1分钟前
1分钟前
cc完成签到,获得积分20
1分钟前
情怀应助尊敬的芷卉采纳,获得10
1分钟前
研友_X89o6n完成签到,获得积分10
1分钟前
aa121599完成签到,获得积分20
1分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
朴素绿蝶发布了新的文献求助10
2分钟前
痴痴的噜完成签到,获得积分10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
搞科研的小李同学完成签到 ,获得积分10
2分钟前
科研通AI6应助朴素绿蝶采纳,获得10
2分钟前
可爱的函函应助hulahula采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
李健应助阿米尔盼盼采纳,获得10
2分钟前
2分钟前
hulahula发布了新的文献求助10
2分钟前
2分钟前
2分钟前
长度2到发布了新的文献求助10
3分钟前
xuan发布了新的文献求助10
3分钟前
长度2到完成签到,获得积分10
3分钟前
3分钟前
xtheuv发布了新的文献求助10
3分钟前
Hello应助hulahula采纳,获得10
3分钟前
嘻嘻哈哈完成签到 ,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992