Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木雨亦潇潇完成签到,获得积分10
1秒前
逍遥呱呱完成签到 ,获得积分10
5秒前
lpc完成签到 ,获得积分10
5秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
孤独的从彤完成签到 ,获得积分10
12秒前
说话要严谨完成签到 ,获得积分10
19秒前
舒适的一凤完成签到 ,获得积分10
19秒前
滴滴答答完成签到 ,获得积分10
20秒前
游艺完成签到 ,获得积分10
20秒前
xiaoxie完成签到 ,获得积分10
23秒前
hebhm完成签到,获得积分10
23秒前
惜曦完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
wuqi完成签到 ,获得积分10
26秒前
RICH完成签到 ,获得积分10
31秒前
芒芒发paper完成签到 ,获得积分10
33秒前
现代大神完成签到,获得积分10
37秒前
顾矜应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
文龙完成签到 ,获得积分10
40秒前
鸭鸭完成签到 ,获得积分10
40秒前
misa完成签到 ,获得积分10
40秒前
风信子完成签到,获得积分10
43秒前
SC完成签到 ,获得积分10
44秒前
微雨若,,完成签到 ,获得积分10
44秒前
47秒前
王kk完成签到 ,获得积分10
48秒前
xia完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
52秒前
十九岁的时差完成签到,获得积分10
52秒前
36456657完成签到,获得积分0
54秒前
5k全完成签到 ,获得积分10
56秒前
迈克老狼完成签到 ,获得积分10
57秒前
BCKT完成签到,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
1分钟前
yong完成签到 ,获得积分10
1分钟前
咎青文发布了新的文献求助10
1分钟前
顺心的惜蕊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438835
求助须知:如何正确求助?哪些是违规求助? 4549997
关于积分的说明 14221301
捐赠科研通 4470952
什么是DOI,文献DOI怎么找? 2450090
邀请新用户注册赠送积分活动 1441058
关于科研通互助平台的介绍 1417610