Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:130: 103957-103957 被引量:76
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太渊发布了新的文献求助10
刚刚
凉小天完成签到,获得积分10
1秒前
甜瓜发布了新的文献求助10
2秒前
feifan123发布了新的文献求助10
2秒前
椰子树完成签到,获得积分10
2秒前
AURORA发布了新的文献求助10
3秒前
汉堡包应助xun采纳,获得10
4秒前
学术吕布完成签到,获得积分10
4秒前
木沂完成签到 ,获得积分10
5秒前
5秒前
5秒前
杜俊发布了新的文献求助10
5秒前
Owen应助李荣杰采纳,获得30
7秒前
9秒前
11秒前
合适的梦菡完成签到,获得积分10
12秒前
13秒前
13秒前
甜瓜完成签到,获得积分10
14秒前
8R60d8应助欣欣子采纳,获得10
14秒前
14秒前
duan发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
芋头cc发布了新的文献求助10
19秒前
19秒前
难摧发布了新的文献求助10
19秒前
俏皮的飞荷完成签到 ,获得积分10
21秒前
随影相伴完成签到 ,获得积分10
21秒前
22秒前
周七七发布了新的文献求助10
22秒前
凳子琪发布了新的文献求助10
22秒前
hzhang01完成签到,获得积分20
23秒前
瘪良科研完成签到,获得积分10
23秒前
xun发布了新的文献求助10
24秒前
木木彡发布了新的文献求助10
25秒前
自由的恋风完成签到,获得积分10
27秒前
酷酷的芙发布了新的文献求助10
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291