亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白加油完成签到 ,获得积分10
2秒前
56秒前
守一完成签到,获得积分10
59秒前
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
2分钟前
慕青应助Wei采纳,获得10
3分钟前
3分钟前
Virtual举报可靠的绝音求助涉嫌违规
3分钟前
yyds完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
柯语雪完成签到 ,获得积分10
3分钟前
3分钟前
馆长应助科研通管家采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
吴彦祖发布了新的文献求助10
4分钟前
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
7分钟前
Dreamer.发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
星辰大海应助cerium1925采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
赘婿应助科研通管家采纳,获得10
8分钟前
8分钟前
严冰蝶完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595839
求助须知:如何正确求助?哪些是违规求助? 4008067
关于积分的说明 12408789
捐赠科研通 3686828
什么是DOI,文献DOI怎么找? 2032082
邀请新用户注册赠送积分活动 1065326
科研通“疑难数据库(出版商)”最低求助积分说明 950651