Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
wanci应助Raymone采纳,获得10
1秒前
1秒前
1秒前
完美世界应助袁气小笼包采纳,获得10
2秒前
4秒前
研友_89eKw8发布了新的文献求助10
4秒前
繁多星发布了新的文献求助10
4秒前
狗蛋儿真棒棒完成签到,获得积分10
4秒前
Shelton发布了新的文献求助30
5秒前
开始旋转发布了新的文献求助10
6秒前
zzx发布了新的文献求助10
6秒前
天真笑白发布了新的文献求助30
7秒前
北岸初晴完成签到,获得积分10
7秒前
威武皮带完成签到,获得积分10
8秒前
wangzhao发布了新的文献求助10
8秒前
打打应助yatou5651采纳,获得10
8秒前
9秒前
朴素的冰颜完成签到,获得积分10
10秒前
LOST完成签到 ,获得积分10
11秒前
别管我了应助xgs采纳,获得30
11秒前
12秒前
苗条的凝芙完成签到,获得积分10
12秒前
erin发布了新的文献求助10
13秒前
Ava应助迷路的煎蛋采纳,获得10
14秒前
希望天下0贩的0应助小船采纳,获得10
14秒前
14秒前
16秒前
闻元杰发布了新的文献求助10
16秒前
plumageblue发布了新的文献求助10
17秒前
18秒前
马帅完成签到 ,获得积分10
18秒前
18秒前
闻风听雨发布了新的文献求助10
19秒前
天真笑白完成签到,获得积分10
19秒前
beichuanheqi完成签到,获得积分10
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751