亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
27秒前
30秒前
Mountain应助科研通管家采纳,获得10
33秒前
愤怒的千易完成签到,获得积分10
46秒前
52秒前
dinglingling完成签到 ,获得积分10
1分钟前
1分钟前
Owen应助哈哈采纳,获得30
1分钟前
1分钟前
哈哈发布了新的文献求助30
1分钟前
1分钟前
1分钟前
哈哈完成签到,获得积分10
1分钟前
nn应助哈哈采纳,获得10
1分钟前
2分钟前
Ryu发布了新的文献求助10
2分钟前
袁粪到了发布了新的文献求助80
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
blue完成签到 ,获得积分10
3分钟前
在水一方应助march采纳,获得10
3分钟前
俊逸吐司完成签到 ,获得积分10
4分钟前
4分钟前
huxiao发布了新的文献求助30
4分钟前
飞天大南瓜完成签到,获得积分10
4分钟前
4分钟前
科研通AI5应助huxiao采纳,获得10
4分钟前
march发布了新的文献求助10
4分钟前
4分钟前
huxiao完成签到,获得积分20
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
march完成签到,获得积分10
4分钟前
杰帅完成签到,获得积分10
4分钟前
4分钟前
NexusExplorer应助yf采纳,获得10
5分钟前
陈英杰完成签到 ,获得积分10
5分钟前
YuhengGuo应助FWCY采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973962
求助须知:如何正确求助?哪些是违规求助? 4229290
关于积分的说明 13172428
捐赠科研通 4018295
什么是DOI,文献DOI怎么找? 2198845
邀请新用户注册赠送积分活动 1211436
关于科研通互助平台的介绍 1126584