Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models

机器学习 人工智能 医学 人口 计算机科学 系统回顾 梅德林 政治学 环境卫生 法学
作者
Sameera Senanayake,Nicole White,Nicholas Graves,Helen Healy,Keshwar Baboolal,Sanjeewa Kularatna
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:130: 103957-103957 被引量:83
标识
DOI:10.1016/j.ijmedinf.2019.103957
摘要

Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidney graft outcome prediction models have been developed using machine learning, and are available in the literature. However, a systematic review of machine learning based prediction methods applied to kidney transplant has not been done to date. The main aim of our study was to perform an in-depth systematic analysis of different machine learning methods used to predict graft outcomes among kidney transplant patients, and assess their usefulness as an aid to decision-making. A systemic review of machine learning methods used to predict graft outcomes among kidney transplant patients was carried out using a search of the Medline, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and Cochrane databases. A total of 295 articles were identified and extracted. Of these, 18 met the inclusion criteria. Most of the studies were published in the United States after 2010. The population size used to develop the models varied from 80 to 92,844, and the number of features in the models ranged from 6 to 71. The most common machine learning methods used were artificial neural networks, decision trees and Bayesian belief networks. Most of the machine learning based predictive models predicted graft failure with high sensitivity and specificity. Only one machine learning based prediction model had modelled time-to-event (survival) information. Seven studies compared the predictive performance of machine learning models with traditional regression methods and the performance of machine learning methods was found to be mixed, when compared with traditional regression methods. There was a wide variation in the size of the study population and the input variables used. However, the prediction accuracy provided mixed results when machine learning and traditional predictive methods are compared. Based on reported gains in predictive performance, machine learning has the potential to improve kidney transplant outcome prediction and aid medical decision making
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻晓露发布了新的文献求助10
刚刚
李本来发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得30
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
1秒前
科研通AI5应助幽默的宛白采纳,获得30
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
单薄归尘完成签到 ,获得积分10
1秒前
无花果应助科研通管家采纳,获得30
1秒前
1秒前
LY完成签到,获得积分10
2秒前
枫于林完成签到 ,获得积分10
2秒前
2秒前
砰砰砰砰啪!完成签到 ,获得积分10
3秒前
lili完成签到 ,获得积分10
5秒前
xzh完成签到,获得积分10
5秒前
ddsyg126完成签到,获得积分10
6秒前
共享精神应助李小新采纳,获得10
7秒前
小鲤鱼吃大菠萝完成签到,获得积分10
7秒前
xuex1发布了新的文献求助10
7秒前
cc发布了新的文献求助50
9秒前
dd完成签到 ,获得积分10
11秒前
天天完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
yuki完成签到,获得积分10
13秒前
依然灬聆听完成签到,获得积分10
14秒前
14秒前
小朱完成签到,获得积分10
15秒前
陈一一完成签到 ,获得积分10
15秒前
纸芯完成签到 ,获得积分10
16秒前
NINI完成签到 ,获得积分10
16秒前
蜂鸟5156完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808