Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling

材料科学 合金 本构方程 延展性(地球科学) 高熵合金 张力(地质) 结构工程 热力学 复合材料 机械 极限抗拉强度 工程类 物理 有限元法 蠕动
作者
T.W. Zhang,Shufang Ma,D. Zhao,Yukun Wu,Yunan Zhang,Zhihua Wang,J.W. Qiao
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:124: 226-246 被引量:87
标识
DOI:10.1016/j.ijplas.2019.08.013
摘要

Abstract The deformation responses of NiCoCrFe high-entropy alloy (HEA) under quasi-static (1 × 10−4-1 × 10−1/s) and dynamic (1,000–6,000/s) tension were investigated. A good combination of high strength and ductility is obtained under dynamic tension. The yield strength and true ultimate tensile strength is increased from 217 to 830 MPa at 1 × 10−4/s to 440 MPa and more than 1,000 MPa at 6,000/s, respectively. In addition, the engineering fracture strains maintain 60%–85% over a wide range of strain rates. The enhancements of strength and ductility originate from (1) the significant strain-rate sensitivity (SRS) mainly due to the presence of short-range orders/clusters (SROs/SRCs) as well as phonon drag effect of dislocations, and (2) the extraordinary work-hardening capacity due to dynamically formed nanoscale twins upon high strain-rate tension. The temperature and strain-rate dependence of the yield strength of the alloy are well modeled based on the thermally activated mechanism. Additionally, considering nanoscale twin boundaries as local sites for nucleating and accommodating dislocations, the dislocation density evolution model is modified and subsequently introduced into Taylor hardening model to accurately capture the hardening behavior of the current NiCoCrFe HEA. Hence, the distinguished work-hardening capacity under dynamic tension can be mainly ascribed to the low dislocation recovery rate and remarkable twin-induced dislocation generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助aoxiangcaizi12采纳,获得10
1秒前
Amai完成签到,获得积分10
1秒前
2秒前
九川发布了新的文献求助10
3秒前
风的季节发布了新的文献求助10
3秒前
可耐的乐荷完成签到,获得积分10
4秒前
WEILAI完成签到,获得积分10
4秒前
my发布了新的文献求助10
4秒前
wenjian完成签到,获得积分10
5秒前
5秒前
Accept2024完成签到,获得积分10
6秒前
万能图书馆应助笑笑采纳,获得10
6秒前
伊丽莎白居易完成签到,获得积分10
7秒前
鳗鱼静珊发布了新的文献求助10
7秒前
yuyiyi完成签到,获得积分10
8秒前
无花果应助胖豆采纳,获得10
9秒前
通~发布了新的文献求助10
9秒前
cc发布了新的文献求助10
10秒前
11秒前
MILL发布了新的文献求助10
11秒前
月光入梦完成签到 ,获得积分10
12秒前
HC完成签到,获得积分10
13秒前
琪琪发布了新的文献求助10
13秒前
14秒前
淡定的思松应助风的季节采纳,获得10
15秒前
所所应助mm采纳,获得10
15秒前
16秒前
荒年完成签到,获得积分10
16秒前
魁梧的曼凡完成签到,获得积分10
16秒前
17秒前
研一小刘发布了新的文献求助10
17秒前
陈莹完成签到,获得积分20
17秒前
qi发布了新的文献求助30
18秒前
18秒前
Wyan完成签到,获得积分20
18秒前
我是老大应助通~采纳,获得10
19秒前
Jenny应助淡定紫菱采纳,获得10
19秒前
逆流的鱼完成签到 ,获得积分10
20秒前
20秒前
liuqian完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794