Predicting sepsis with a recurrent neural network using the MIMIC III database

败血症 人工神经网络 接收机工作特性 循环神经网络 计算机科学 医学 重症监护室 人口 人工智能 机器学习 内科学 环境卫生
作者
Matthieu Scherpf,Felix Gräßer,Hagen Malberg,Sebastian Zaunseder
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:113: 103395-103395 被引量:111
标识
DOI:10.1016/j.compbiomed.2019.103395
摘要

Predicting sepsis onset with a recurrent neural network and performance comparison with InSight - a previously proposed algorithm for the prediction of sepsis onset. A retrospective analysis of adult patients admitted to the intensive care unit (from the MIMIC III database) who did not fall under the definition of sepsis at the time of admission. The area under the receiver operating characteristic (AUROC) measures the performance of the prediction task. We examine the sequence length given to the machine learning algorithms for different points in time before sepsis onset concerning the prediction performance. Additionally, the impact of sepsis onset's definition is investigated. We evaluate the model with a relatively large and thus more representative patient population compared to related works in the field. For a prediction 3 h prior to sepsis onset, our network achieves an AUROC of 0.81 (95% CI: 0.78–0.84). The InSight algorithm achieves an AUROC of 0.72 (95% CI: 0.69–0.75). For a fixed sensitivity of 90% our network reaches a specificity of 47.0% (95% CI: 43.1%–50.8%) compared to 31.1% (95% CI: 24.8%–37.5%) for InSight. In addition, we compare the performance for 6 and 12 h prediction time for both approaches. Our findings demonstrate that a recurrent neural network is superior to InSight considering the prediction performance. Most probably, the improvement results from the network's ability of revealing time dependencies. We show that the length of the look back has a significant impact on the performance of the classifier. We also demonstrate that for the correct detection of sepsis onset for a retrospective analysis, further research is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ry发布了新的文献求助20
2秒前
3秒前
刘柳完成签到 ,获得积分10
3秒前
Mingtiaoxiyue发布了新的文献求助10
3秒前
张青青发布了新的文献求助10
3秒前
3秒前
别光给我发综述完成签到,获得积分10
3秒前
bkagyin应助ddd采纳,获得10
3秒前
旺旺完成签到,获得积分10
5秒前
6秒前
6秒前
小马甲应助ZZ采纳,获得10
7秒前
李爱国应助ZZ采纳,获得10
7秒前
bkagyin应助ZZ采纳,获得10
7秒前
隐形曼青应助ZZ采纳,获得10
7秒前
情怀应助ZZ采纳,获得10
7秒前
李健的小迷弟应助ZZ采纳,获得10
7秒前
充电宝应助ZZ采纳,获得10
7秒前
orixero应助ZZ采纳,获得10
7秒前
7秒前
会会完成签到,获得积分10
7秒前
7秒前
小蘑菇应助精明的沅采纳,获得10
8秒前
Mia完成签到,获得积分10
8秒前
CipherSage应助新新采纳,获得30
8秒前
kkkkkkkkkkkkk发布了新的文献求助10
9秒前
小鱼完成签到,获得积分10
9秒前
星辰大海应助坚定萤采纳,获得10
9秒前
9秒前
OuyueZhang完成签到,获得积分10
10秒前
10秒前
无花果应助hdbys采纳,获得10
11秒前
HollidayLee完成签到,获得积分10
11秒前
红莲墨生发布了新的文献求助10
11秒前
小鱼发布了新的文献求助10
12秒前
cindy发布了新的文献求助10
12秒前
OuyueZhang发布了新的文献求助10
13秒前
DD应助蛋子s采纳,获得10
13秒前
糊辣鱼完成签到 ,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130