已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting sepsis with a recurrent neural network using the MIMIC III database

败血症 人工神经网络 接收机工作特性 循环神经网络 计算机科学 医学 重症监护室 人口 人工智能 机器学习 内科学 环境卫生
作者
Matthieu Scherpf,Felix Gräßer,Hagen Malberg,Sebastian Zaunseder
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:113: 103395-103395 被引量:111
标识
DOI:10.1016/j.compbiomed.2019.103395
摘要

Predicting sepsis onset with a recurrent neural network and performance comparison with InSight - a previously proposed algorithm for the prediction of sepsis onset. A retrospective analysis of adult patients admitted to the intensive care unit (from the MIMIC III database) who did not fall under the definition of sepsis at the time of admission. The area under the receiver operating characteristic (AUROC) measures the performance of the prediction task. We examine the sequence length given to the machine learning algorithms for different points in time before sepsis onset concerning the prediction performance. Additionally, the impact of sepsis onset's definition is investigated. We evaluate the model with a relatively large and thus more representative patient population compared to related works in the field. For a prediction 3 h prior to sepsis onset, our network achieves an AUROC of 0.81 (95% CI: 0.78–0.84). The InSight algorithm achieves an AUROC of 0.72 (95% CI: 0.69–0.75). For a fixed sensitivity of 90% our network reaches a specificity of 47.0% (95% CI: 43.1%–50.8%) compared to 31.1% (95% CI: 24.8%–37.5%) for InSight. In addition, we compare the performance for 6 and 12 h prediction time for both approaches. Our findings demonstrate that a recurrent neural network is superior to InSight considering the prediction performance. Most probably, the improvement results from the network's ability of revealing time dependencies. We show that the length of the look back has a significant impact on the performance of the classifier. We also demonstrate that for the correct detection of sepsis onset for a retrospective analysis, further research is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的盼望完成签到 ,获得积分10
刚刚
科研通AI5应助missfast采纳,获得10
4秒前
5秒前
5秒前
核桃应助开心尔芙采纳,获得10
5秒前
6秒前
8秒前
机灵柚子发布了新的文献求助60
11秒前
GY发布了新的文献求助10
11秒前
12秒前
YZ完成签到,获得积分10
12秒前
15秒前
nkcyn完成签到,获得积分10
17秒前
17秒前
SCI的李完成签到 ,获得积分10
17秒前
18秒前
善学以致用应助冰山泥采纳,获得10
19秒前
可爱的函函应助JayChou采纳,获得10
19秒前
呆萌剑封完成签到,获得积分10
19秒前
20秒前
风清扬应助科研通管家采纳,获得150
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
20秒前
ccm应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得30
20秒前
20秒前
大个应助科研通管家采纳,获得10
21秒前
NexusExplorer应助corner采纳,获得10
21秒前
共享精神应助李小伟采纳,获得10
21秒前
zhihe完成签到,获得积分10
22秒前
22秒前
23秒前
思源应助杰瑞采纳,获得10
23秒前
彭于晏应助Harrison采纳,获得10
23秒前
zc发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062774
求助须知:如何正确求助?哪些是违规求助? 4286522
关于积分的说明 13357250
捐赠科研通 4104286
什么是DOI,文献DOI怎么找? 2247425
邀请新用户注册赠送积分活动 1253032
关于科研通互助平台的介绍 1183969