亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies

假阳性悖论 随机效应模型 协变量 全基因组关联研究 线性模型 混淆 生物 广义线性混合模型 统计 固定效应模型 多重比较问题 亲属关系 遗传关联 人口 广义线性模型 计算生物学 数学 遗传学 荟萃分析 医学 内科学 单核苷酸多态性 基因 环境卫生 基因型 政治学 法学 面板数据
作者
Xiaolei Liu,Meng Huang,Bin Fan,Edward S. Buckler,Zhiwu Zhang
出处
期刊:PLOS Genetics [Public Library of Science]
卷期号:12 (2): e1005767-e1005767 被引量:1334
标识
DOI:10.1371/journal.pgen.1005767
摘要

False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助安静海露采纳,获得10
2秒前
8秒前
10秒前
moika发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
安静海露发布了新的文献求助10
15秒前
如意竺完成签到,获得积分0
25秒前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
红火完成签到 ,获得积分10
1分钟前
三三完成签到,获得积分10
1分钟前
三心草完成签到 ,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科目三应助moika采纳,获得10
3分钟前
444发布了新的文献求助10
3分钟前
打打应助安静海露采纳,获得10
3分钟前
科研通AI6应助444采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
安静海露发布了新的文献求助10
4分钟前
李健应助好人采纳,获得10
4分钟前
安静海露完成签到,获得积分10
4分钟前
444完成签到,获得积分20
4分钟前
5分钟前
好人发布了新的文献求助10
5分钟前
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
123发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496