已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Life history and spatial traits predict extinction risk due to climate change

消光(光学矿物学) 气候变化 脆弱性(计算) IUCN红色名录 生物多样性 环境资源管理 地理 种群生存力分析 脆弱性评估 人口 环境科学 生态学 濒危物种 计算机科学 生物 人口学 心理弹性 栖息地 社会学 古生物学 计算机安全 心理治疗师 心理学
作者
Richard G. Pearson,Jessica C. Stanton,Kevin T. Shoemaker,Matthew E. Aiello‐Lammens,Peter J. Ersts,Ned Horning,Damien A. Fordham,Christopher J. Raxworthy,Hae Yeong Ryu,Jason McNees,H. Reşi̇t Akçakaya
出处
期刊:Nature Climate Change [Nature Portfolio]
卷期号:4 (3): 217-221 被引量:402
标识
DOI:10.1038/nclimate2113
摘要

Climate change could be a game-changer for biodiversity conservation, potentially invalidating many established methods including those employed in vulnerability assessments. Now, a simulation study finds that extinction risk due to climate change can be predicted using measurable spatial and demographic variables. Interestingly, most of those variables identified as important are already used in species conservation assessment. There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate1. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change2,3,4,5 based on the expectation that established assessments such as the IUCN Red List6 need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened7,8,9, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王白山发布了新的文献求助10
1秒前
yydragen应助1649639951qq采纳,获得30
2秒前
守墓人完成签到 ,获得积分10
3秒前
搜集达人应助dnnnsns采纳,获得30
4秒前
5秒前
黄炜柏呵呵关注了科研通微信公众号
5秒前
9秒前
Yesyes发布了新的文献求助10
10秒前
李爱国应助Zayne采纳,获得10
11秒前
黄晓旭完成签到,获得积分10
11秒前
赵乂发布了新的文献求助10
17秒前
充电宝应助Yesyes采纳,获得10
20秒前
Owen应助成阳采纳,获得10
20秒前
FIN应助种地猪猪采纳,获得10
20秒前
冷月发布了新的文献求助10
21秒前
21秒前
万能图书馆应助X悦采纳,获得10
22秒前
22秒前
liangyong完成签到,获得积分10
23秒前
年糕菌完成签到 ,获得积分10
24秒前
小马甲应助黄晓旭采纳,获得10
25秒前
689发布了新的文献求助10
25秒前
27秒前
28秒前
echo发布了新的文献求助10
29秒前
29秒前
Jasper应助张参采纳,获得10
29秒前
TZ完成签到 ,获得积分10
30秒前
成阳完成签到,获得积分10
31秒前
X悦完成签到,获得积分10
31秒前
堇徽发布了新的文献求助10
31秒前
absorb发布了新的文献求助10
33秒前
成阳发布了新的文献求助10
33秒前
34秒前
小宋爱科研完成签到 ,获得积分10
37秒前
41秒前
Owen应助犹豫的铅笔采纳,获得10
42秒前
可爱的函函应助DengLingjie采纳,获得10
42秒前
研友_89eKw8完成签到,获得积分20
43秒前
猪猪hero应助kyo采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021