Detecting Advanced Persistent Threats using Fractal Dimension based Machine Learning Classification

假阳性悖论 计算机科学 假阳性和假阴性 异常检测 人工智能 网络数据包 互联网 机器学习 假阳性率 分形 数据挖掘 计算机安全 数学 数学分析 万维网
作者
Sana Siddiqui,Muhammad Salman Khan,Ken Ferens,W. Kinsner
标识
DOI:10.1145/2875475.2875484
摘要

Advanced Persistent Threats (APTs) are a new breed of internet based smart threats, which can go undetected with the existing state of-the-art internet traffic monitoring and protection systems. With the evolution of internet and cloud computing, a new generation of smart APT attacks has also evolved and signature based threat detection systems are proving to be futile and insufficient. One of the essential strategies in detecting APTs is to continuously monitor and analyze various features of a TCP/IP connection, such as the number of transferred packets, the total count of the bytes exchanged, the duration of the TCP/IP connections, and details of the number of packet flows. The current threat detection approaches make extensive use of machine learning algorithms that utilize statistical and behavioral knowledge of the traffic. However, the performance of these algorithms is far from satisfactory in terms of reducing false negatives and false positives simultaneously. Mostly, current algorithms focus on reducing false positives, only. This paper presents a fractal based anomaly classification mechanism, with the goal of reducing both false positives and false negatives, simultaneously. A comparison of the proposed fractal based method with a traditional Euclidean based machine learning algorithm (k-NN) shows that the proposed method significantly outperforms the traditional approach by reducing false positive and false negative rates, simultaneously, while improving the overall classification rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助sky采纳,获得10
刚刚
是白鸽啊完成签到 ,获得积分10
2秒前
CipherSage应助土豪的黑夜采纳,获得10
5秒前
本特利发布了新的文献求助10
5秒前
丰富山灵完成签到,获得积分10
7秒前
Latous关注了科研通微信公众号
8秒前
8秒前
10秒前
chuyue完成签到,获得积分10
11秒前
正直的盼夏完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
14秒前
本特利完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
stories发布了新的文献求助20
16秒前
1234发布了新的文献求助10
17秒前
17秒前
南巷完成签到,获得积分10
18秒前
梦游游游完成签到,获得积分10
19秒前
曹乌发布了新的文献求助30
19秒前
科研通AI2S应助土豪的黑夜采纳,获得10
20秒前
隐形曼青应助morena采纳,获得10
20秒前
健忘天问发布了新的文献求助10
21秒前
21秒前
Liao发布了新的文献求助10
24秒前
落后忆丹发布了新的文献求助50
25秒前
土豪的黑夜完成签到,获得积分10
27秒前
Anri发布了新的文献求助10
27秒前
无私航空完成签到,获得积分10
28秒前
28秒前
30秒前
Owen应助健忘天问采纳,获得10
30秒前
科研小白完成签到 ,获得积分10
33秒前
39秒前
40秒前
CC完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503