假阳性悖论
计算机科学
假阳性和假阴性
异常检测
人工智能
网络数据包
互联网
机器学习
假阳性率
分形
数据挖掘
计算机安全
数学
数学分析
万维网
作者
Sana Siddiqui,Muhammad Salman Khan,Ken Ferens,W. Kinsner
标识
DOI:10.1145/2875475.2875484
摘要
Advanced Persistent Threats (APTs) are a new breed of internet based smart threats, which can go undetected with the existing state of-the-art internet traffic monitoring and protection systems. With the evolution of internet and cloud computing, a new generation of smart APT attacks has also evolved and signature based threat detection systems are proving to be futile and insufficient. One of the essential strategies in detecting APTs is to continuously monitor and analyze various features of a TCP/IP connection, such as the number of transferred packets, the total count of the bytes exchanged, the duration of the TCP/IP connections, and details of the number of packet flows. The current threat detection approaches make extensive use of machine learning algorithms that utilize statistical and behavioral knowledge of the traffic. However, the performance of these algorithms is far from satisfactory in terms of reducing false negatives and false positives simultaneously. Mostly, current algorithms focus on reducing false positives, only. This paper presents a fractal based anomaly classification mechanism, with the goal of reducing both false positives and false negatives, simultaneously. A comparison of the proposed fractal based method with a traditional Euclidean based machine learning algorithm (k-NN) shows that the proposed method significantly outperforms the traditional approach by reducing false positive and false negative rates, simultaneously, while improving the overall classification rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI