人工智能
模式识别(心理学)
计算机科学
面部识别系统
面部表情
面部表情识别
特征提取
面子(社会学概念)
特征(语言学)
分类器(UML)
支持向量机
判别式
特征向量
线性判别分析
局部二进制模式
主成分分析
语音识别
作者
Ehab H. El-Shazly,Moataz M. Abdelwahab,Rin-ichiro Taniguchi
出处
期刊:Signal-Image Technology and Internet-Based Systems
日期:2015-11-23
卷期号:: 639-644
被引量:3
标识
DOI:10.1109/sitis.2015.57
摘要
In this paper, an efficient facial and facial expression recognition algorithm employing Canonical Correlation Analysis (CCA) for features fusion and classification is presented. Multiplefeaturesareextracted, transformedtodifferenttransformdomainsandfusedtogether. TwoDimensionalPrincipal Component Analysis (2DPCA) is used to maintain only the principal features representing different faces. 2DPCA also maintainsthespatialrelationbetweenadjacentpixelsimproving the overall recognition accuracy. CCA is being used for features fusion as well as classification. Experimental results on four different data sets showed that our algorithm outperform all most recent published state of the art techniques and reached 100 % recognition accuracy in most data sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI