Rational ANCF Thin Plate Finite Element

有限元法 数学 数学分析 几何学 参数统计 质量矩阵 基质(化学分析) 物理 热力学 统计 复合材料 核物理学 中微子 材料科学
作者
Carmine Maria Pappalardo,Zuqing Yu,Xiaoshun Zhang,Ahmed A. Shabana
出处
期刊:Journal of Computational and Nonlinear Dynamics [ASM International]
卷期号:11 (5) 被引量:55
标识
DOI:10.1115/1.4032385
摘要

In this paper, a rational absolute nodal coordinate formulation (RANCF) thin plate element is developed and its use in the analysis of curved geometry is demonstrated. RANCF finite elements are the rational counterpart of the nonrational absolute nodal coordinate formulation (ANCF) finite elements which employ rational polynomials as basis or blending functions. RANCF finite elements can be used in the accurate geometric modeling and analysis of flexible continuum bodies with complex geometrical shapes that cannot be correctly described using nonrational finite elements. In this investigation, the weights, which enter into the formulation of the RANCF finite element and form an additional set of geometric parameters, are assumed to be nonzero constants in order to accurately represent the initial geometry and at the same time preserve the desirable ANCF features, including a constant mass matrix and zero centrifugal and Coriolis generalized inertia forces. A procedure for defining the control points and weights of a Bezier surface defined in a parametric form is used in order to be able to efficiently create RANCF/ANCF FE meshes in a straightforward manner. This procedure leads to a set of linear algebraic equations whose solution defines the RANCF coordinates and weights without the need for an iterative procedure. In order to be able to correctly describe the ANCF and RANCF gradient deficient FE geometry, a square matrix of position vector gradients is formulated and used to calculate the FE elastic forces. As discussed in this paper, the proposed finite element allows for describing exactly circular and conic sections and can be effectively used in the geometry and analysis modeling of multibody system (MBS) components including tires. The proposed RANCF finite element is compared with other nonrational ANCF plate elements. Several numerical examples are presented in order to demonstrate the use of the proposed RANCF thin plate element. In particular, the FE models of a set of rational surfaces, which include conic sections and tires, are developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci发布了新的文献求助10
1秒前
1秒前
smile应助慕容采文采纳,获得20
1秒前
总攻大人完成签到,获得积分10
1秒前
科研消炎发布了新的文献求助10
1秒前
思源应助刘思琪采纳,获得10
1秒前
淡然的平蓝完成签到,获得积分10
1秒前
积极友绿完成签到,获得积分10
2秒前
等待的道消完成签到,获得积分10
2秒前
wanci应助LIN96T采纳,获得10
2秒前
gwh发布了新的文献求助10
2秒前
2秒前
3秒前
浮熙发布了新的文献求助10
3秒前
星辰大海应助Wang采纳,获得10
3秒前
Yelanjiao完成签到,获得积分10
3秒前
4秒前
aslink发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
知性的成关注了科研通微信公众号
5秒前
5秒前
冽飏完成签到,获得积分20
5秒前
斯文冷亦发布了新的文献求助10
6秒前
1177完成签到,获得积分20
6秒前
yang完成签到 ,获得积分10
6秒前
6秒前
刘钱美子发布了新的文献求助10
8秒前
x1发布了新的文献求助10
9秒前
无糖的问题完成签到,获得积分20
9秒前
jjy完成签到 ,获得积分10
9秒前
bkagyin应助余佘采纳,获得30
9秒前
10秒前
毕业完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
不吃香菇完成签到,获得积分10
11秒前
星辰大海应助仲夏采纳,获得10
11秒前
Bronx发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738