A working guide to boosted regression trees

Boosting(机器学习) 回归 计算机科学 决策树 离群值 机器学习 回归分析 树(集合论) 统计模型 人工智能 多元自适应回归样条 线性回归 简单线性回归 预测建模 数据挖掘 统计 数学 多项式回归 数学分析
作者
Jane Elith,John R. Leathwick,Trevor Hastie
出处
期刊:Journal of Animal Ecology [Wiley]
卷期号:77 (4): 802-813 被引量:6032
标识
DOI:10.1111/j.1365-2656.2008.01390.x
摘要

1 Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2 This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3 Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4 The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel (Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助黄家宝采纳,获得10
1秒前
黑摄会阿Fay完成签到 ,获得积分10
1秒前
诚心仙人掌完成签到,获得积分10
1秒前
1秒前
甜美元灵完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
Steplan完成签到,获得积分10
5秒前
浮游应助涂玉含采纳,获得10
5秒前
nenoaowu应助YYY采纳,获得30
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得30
7秒前
ding应助科研通管家采纳,获得10
7秒前
沙沫完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
BINGBING1230发布了新的文献求助10
8秒前
evilbatuu发布了新的文献求助10
8秒前
Davoxin关注了科研通微信公众号
8秒前
童梓祺发布了新的文献求助10
9秒前
9秒前
Mars完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助150
13秒前
丽海张发布了新的文献求助10
13秒前
feng完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993552
求助须知:如何正确求助?哪些是违规求助? 4241343
关于积分的说明 13213992
捐赠科研通 4036754
什么是DOI,文献DOI怎么找? 2208675
邀请新用户注册赠送积分活动 1219601
关于科研通互助平台的介绍 1137928