Prediction of treatment outcome in soft tissue sarcoma based on radiologically defined habitats

磁共振成像 软组织 软组织肉瘤 肉瘤 放射科 医学 对比度(视觉) 坏死 分割 强度(物理) 图像分割 病理 计算机科学 生物医学工程 人工智能 物理 量子力学
作者
Hamidreza Farhidzadeh,Baishali Chaudhury,Mu Zhou,Dmitry B. Goldgof,Lawrence Hall,Robert A. Gatenby,Robert J. Gillies,Meera Raghavan
出处
期刊:Proceedings of SPIE 被引量:12
标识
DOI:10.1117/12.2082324
摘要

Soft tissue sarcomas are malignant tumors which develop from tissues like fat, muscle, nerves, fibrous tissue or blood vessels. They are challenging to physicians because of their relative infrequency and diverse outcomes, which have hindered development of new therapeutic agents. Additionally, assessing imaging response of these tumors to therapy is also difficult because of their heterogeneous appearance on magnetic resonance imaging (MRI). In this paper, we assessed standard of care MRI sequences performed before and after treatment using 36 patients with soft tissue sarcoma. Tumor tissue was identified by manually drawing a mask on contrast enhanced images. The Otsu segmentation method was applied to segment tumor tissue into low and high signal intensity regions on both T1 post-contrast and T2 without contrast images. This resulted in four distinctive subregions or "habitats." The features used to predict metastatic tumors and necrosis included the ratio of habitat size to whole tumor size and components of 2D intensity histograms. Individual cases were correctly classified as metastatic or non-metastatic disease with 80.55% accuracy and for necrosis ≥ 90 or necrosis <90 with 75.75% accuracy by using meta-classifiers which contained feature selectors and classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyj完成签到,获得积分10
1秒前
1秒前
孙燕应助Stardust采纳,获得10
1秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
梅卡完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
5秒前
酷波er应助飞快的夜天采纳,获得10
7秒前
7秒前
7秒前
范月月完成签到 ,获得积分10
8秒前
sirhai发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助少敏敏采纳,获得10
9秒前
英姑应助罗拉采纳,获得10
11秒前
小爪冰凉发布了新的文献求助10
11秒前
11秒前
11秒前
苏孖发布了新的文献求助20
11秒前
Qi完成签到 ,获得积分10
12秒前
百事可乐完成签到 ,获得积分10
14秒前
李嘉欣发布了新的文献求助10
14秒前
小万完成签到,获得积分10
15秒前
Lucas应助开灯人和关灯人采纳,获得10
15秒前
怕孤独的冰淇淋完成签到,获得积分10
16秒前
禹与于发布了新的文献求助10
17秒前
persist发布了新的文献求助10
17秒前
向上发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
111完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173