材料科学
聚乙烯醇
模板
聚合物
聚二甲基硅氧烷
纳米技术
图层(电子)
基质(水族馆)
粘附
纳米颗粒
纳米光刻
化学工程
复合材料
制作
病理
替代医学
工程类
地质学
海洋学
医学
摘要
The paper describes the use of water-dissolvable masks, formed from a polyvinyl alcohol film forming solution, for high-resolution pattern definition and materials-transfer printing. The approach replicates surface patterns as water-soluble polymer masks (templates) by spin-casting the film-forming solution onto a master pattern. The water-soluble mask is coupled to a substrate by polymer adhesion to form a solid two-layer structure. Water is used to dissolve the mask layer to uncover the formed pattern in the adhesive layer, thereby providing a new release mechanism for contact-based methods of pattern formation. Moreover, the patterned polymer adhesion transfer process enables a large-area, conformable, single-use template addressed towards meeting registration and defect control challenges in contact printing. The process further incorporates the capability to replicate with loaded nanostructured materials to form a composite of nanoparticles in a soluble polymeric matrix with a patterned surface. The embedded particles are accessible at the surface of the template and thereby are concurrently transferred to the substrate through the polymer adhesion process and subsequently released from the soluble template after water-dissolution in a structured manner. The paper also describes applications of PVA in forming polymer masks as (a) suspended thin-film templates, (b) imprinting templates for repeated use, and (c) as templates for nanoparticle formation by collimated deposition. Polyvinyl alcohol thus provides an additional material for consideration as a mask (template) for nanofabrication, and would be an alternative to quartz, silicon, and polydimethylsiloxane (PDMS) in that regard. The class of printing techniques using PVA as a mask material is referred to as molecular transfer lithography (MxL).
科研通智能强力驱动
Strongly Powered by AbleSci AI