Deterministic ripple-spreading model for complex networks

涟漪 统计物理学 计算机科学 复杂网络 拓扑(电路) 数学 物理 组合数学 量子力学 万维网 电压
作者
Xiao‐Bing Hu,Ming Wang,Mark S. Leeson,Evor L. Hines,Ezequiel A. Di Paolo
出处
期刊:Physical Review E [American Physical Society]
卷期号:83 (4): 046123-046123 被引量:29
标识
DOI:10.1103/physreve.83.046123
摘要

This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingsu108发布了新的文献求助10
刚刚
虚幻人完成签到,获得积分10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得20
2秒前
NexusExplorer应助李治海采纳,获得10
2秒前
betruth应助科研通管家采纳,获得10
2秒前
耕牛热发布了新的文献求助10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
2秒前
凡而不庸完成签到,获得积分10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
秀丽谷蕊发布了新的文献求助10
2秒前
李健应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
阔达的无剑完成签到,获得积分10
3秒前
温暖的银耳汤完成签到,获得积分20
3秒前
4秒前
小鱼发布了新的文献求助10
4秒前
5秒前
科研通AI6应助默listening采纳,获得10
5秒前
binshier完成签到,获得积分10
5秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580294
求助须知:如何正确求助?哪些是违规求助? 4665110
关于积分的说明 14754799
捐赠科研通 4606614
什么是DOI,文献DOI怎么找? 2527832
邀请新用户注册赠送积分活动 1497247
关于科研通互助平台的介绍 1466314