数学
匡威
李雅普诺夫函数
李普希茨连续性
理论(学习稳定性)
李雅普诺夫指数
Lyapunov重新设计
李雅普诺夫方程
数学分析
控制理论(社会学)
应用数学
非线性系统
计算机科学
几何学
机器学习
物理
控制(管理)
量子力学
人工智能
混乱的
作者
Sanjay P. Bhat,Dennis S. Bernstein
出处
期刊:Siam Journal on Control and Optimization
[Society for Industrial and Applied Mathematics]
日期:2000-01-01
卷期号:38 (3): 751-766
被引量:4315
标识
DOI:10.1137/s0363012997321358
摘要
Finite-time stability is defined for equilibria of continuous but non-Lipschitzian autonomous systems. Continuity, Lipschitz continuity, and Hölder continuity of the settling-time function are studied and illustrated with several examples. Lyapunov and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability. It is shown that the regularity properties of the Lyapunov function and those of the settling-time function are related. Consequently, converse Lyapunov results can only assure the existence of continuous Lyapunov functions. Finally, the sensitivity of finite-time-stable systems to perturbations is investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI