Dislocation nucleation governed softening and maximum strength in nano-twinned metals

成核 位错 材料科学 部分位错 凝聚态物理 晶体孪晶 晶界 可塑性 微晶 位错蠕变 软化 变形机理 复合材料 结晶学 变形(气象学) 冶金 微观结构 化学 物理 热力学
作者
Xiaoyan Li,Yujie Wei,Lei Lu,K. Lu,Huajian Gao
出处
期刊:Nature [Nature Portfolio]
卷期号:464 (7290): 877-880 被引量:1074
标识
DOI:10.1038/nature08929
摘要

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries and other obstacles. For nanostructured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle, because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的小牛蛙完成签到,获得积分10
1秒前
1秒前
又来注水了完成签到,获得积分10
2秒前
3秒前
4秒前
zzrg完成签到,获得积分10
5秒前
6秒前
6秒前
天天快乐应助轻松的贞采纳,获得10
7秒前
8秒前
暴躁的阁完成签到,获得积分10
8秒前
爱上学的小金完成签到 ,获得积分10
8秒前
王小超发布了新的文献求助30
8秒前
自然完成签到,获得积分10
8秒前
Hannah发布了新的文献求助10
9秒前
XIAOYANG发布了新的文献求助10
9秒前
飘飘发布了新的文献求助10
9秒前
鬼笔环肽发布了新的文献求助10
9秒前
9秒前
xs关闭了xs文献求助
11秒前
痕迹完成签到 ,获得积分10
11秒前
英俊的铭应助小花采纳,获得10
12秒前
Hello应助自然采纳,获得10
12秒前
Landau发布了新的文献求助10
12秒前
alexlpb完成签到,获得积分0
13秒前
默默安双发布了新的文献求助10
13秒前
13秒前
13秒前
昏睡的蟠桃应助jhbdhs采纳,获得30
15秒前
Li656943234发布了新的文献求助20
15秒前
16秒前
Hannah完成签到,获得积分20
16秒前
体贴寒烟完成签到 ,获得积分10
16秒前
烯灯完成签到,获得积分10
16秒前
16秒前
轻松的贞完成签到,获得积分20
17秒前
zcy完成签到,获得积分10
17秒前
gsh发布了新的文献求助10
17秒前
17秒前
dis发布了新的文献求助50
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582