Estimating mango crop yield using image analysis using fruit at ‘stone hardening’ stage and night time imaging

人工智能 RGB颜色模型 分量 数学 分割 机器视觉 计算机视觉 计算机科学 图像处理 模式识别(心理学) 图像(数学) 彩色图像
作者
A. Payne,Kerry B. Walsh,P.P. Subedi,Dennis Jarvis
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:100: 160-167 被引量:102
标识
DOI:10.1016/j.compag.2013.11.011
摘要

This paper extends a previous study on the use of image analysis to automatically estimate mango crop yield (fruit on tree) (Payne et al., 2013). Images were acquired at night, using artificial lighting of fruit at an earlier stage of maturation (‘stone hardening’ stage) than for the previous study. Multiple image sets were collected during the 2011 and 2012 seasons. Despite altering the settings of the filters in the algorithm presented in the previous study (based on colour segmentation using RGB and YCbCr, and texture), the less mature fruit were poorly identified, due to a lower extent of red colouration of the skin. The algorithm was altered to reduce its dependence on colour features and to increase its use of texture filtering, hessian filtering in particular, to remove leaves, trunk and stems. Results on a calibration set of images (2011) were significantly improved, with 78.3% of fruit detected, an error rate of 10.6% and an R2 value (machine vision to manual count) of 0.63. Further application of the approach on validation sets from 2011 and 2012 had mixed results, with issues related to variation in foliage characteristics between sets. It is proposed the detection approaches within both of these algorithms be used as a ‘toolkit’ for a mango detection system, within an expert system that also uses user input to improve the accuracy of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助艺玲采纳,获得10
刚刚
longtengfei发布了新的文献求助10
刚刚
1秒前
1秒前
ZL发布了新的文献求助10
3秒前
luca发布了新的文献求助10
3秒前
ruby发布了新的文献求助10
3秒前
沉静的颦发布了新的文献求助10
4秒前
4秒前
cjy完成签到,获得积分10
4秒前
4秒前
5秒前
Zoe完成签到,获得积分10
5秒前
5秒前
5秒前
任性完成签到,获得积分10
5秒前
an发布了新的文献求助10
6秒前
6秒前
领导范儿应助袅袅采纳,获得10
6秒前
若狂完成签到,获得积分10
6秒前
Gyy完成签到,获得积分10
7秒前
7秒前
7秒前
上官若男应助hu970采纳,获得10
7秒前
8秒前
妮儿发布了新的文献求助10
9秒前
9秒前
Aile。完成签到,获得积分10
9秒前
9秒前
霹雳游侠完成签到,获得积分10
10秒前
hjj发布了新的文献求助10
12秒前
gg完成签到,获得积分10
12秒前
狂野觅云发布了新的文献求助10
12秒前
坚强的广山应助iRan采纳,获得200
12秒前
12秒前
余姚发布了新的文献求助10
12秒前
12秒前
12秒前
哈哈发布了新的文献求助10
12秒前
洛尚发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759