Estimating mango crop yield using image analysis using fruit at ‘stone hardening’ stage and night time imaging

人工智能 RGB颜色模型 分量 数学 分割 机器视觉 计算机视觉 计算机科学 图像处理 模式识别(心理学) 图像(数学) 彩色图像
作者
A. Payne,Kerry B. Walsh,P.P. Subedi,Dennis Jarvis
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:100: 160-167 被引量:102
标识
DOI:10.1016/j.compag.2013.11.011
摘要

This paper extends a previous study on the use of image analysis to automatically estimate mango crop yield (fruit on tree) (Payne et al., 2013). Images were acquired at night, using artificial lighting of fruit at an earlier stage of maturation (‘stone hardening’ stage) than for the previous study. Multiple image sets were collected during the 2011 and 2012 seasons. Despite altering the settings of the filters in the algorithm presented in the previous study (based on colour segmentation using RGB and YCbCr, and texture), the less mature fruit were poorly identified, due to a lower extent of red colouration of the skin. The algorithm was altered to reduce its dependence on colour features and to increase its use of texture filtering, hessian filtering in particular, to remove leaves, trunk and stems. Results on a calibration set of images (2011) were significantly improved, with 78.3% of fruit detected, an error rate of 10.6% and an R2 value (machine vision to manual count) of 0.63. Further application of the approach on validation sets from 2011 and 2012 had mixed results, with issues related to variation in foliage characteristics between sets. It is proposed the detection approaches within both of these algorithms be used as a ‘toolkit’ for a mango detection system, within an expert system that also uses user input to improve the accuracy of the system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠云发布了新的文献求助10
刚刚
快乐蜗牛完成签到,获得积分10
刚刚
SciGPT应助xiaozhou采纳,获得10
1秒前
1秒前
JamesPei应助龙卡烧烤店采纳,获得10
1秒前
1秒前
哈哈镜阿姐应助九九采纳,获得10
2秒前
2秒前
DaSheng发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
乐乐应助Ok采纳,获得10
3秒前
小江发布了新的文献求助10
3秒前
幽默服饰完成签到,获得积分10
3秒前
甜蜜的傲蕾完成签到,获得积分10
3秒前
3秒前
Supper完成签到 ,获得积分10
3秒前
充电宝应助净水涟漪采纳,获得10
4秒前
JamesPei应助迪迦采纳,获得10
4秒前
huang1499完成签到,获得积分20
4秒前
4秒前
激情的灰狼应助weiwei采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
4秒前
忘我实多完成签到,获得积分10
5秒前
6秒前
inzaghi发布了新的文献求助10
6秒前
搜集达人应助11采纳,获得10
6秒前
huang1499发布了新的文献求助10
7秒前
舒适忆枫发布了新的文献求助10
7秒前
科研废材完成签到,获得积分10
7秒前
zll发布了新的文献求助10
7秒前
8秒前
8秒前
泽佑完成签到,获得积分20
8秒前
8秒前
Jasper应助LIU采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224