Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles

医学 表型 乳腺癌 鉴定(生物学) 基因表达 基因 癌症 计算生物学 癌症研究 病理 遗传学 内科学 生物 植物
作者
Ahmed Ashraf,Dania Daye,Sara C. Gavenonis,Carolyn Mies,Michael D. Feldman,Mark Rosen,Despina Kontos
出处
期刊:Radiology [Radiological Society of North America]
卷期号:272 (2): 374-384 被引量:141
标识
DOI:10.1148/radiol.14131375
摘要

To present a method for identifying intrinsic imaging phenotypes in breast cancer tumors and to investigate their association with prognostic gene expression profiles.The authors retrospectively analyzed dynamic contrast material-enhanced (DCE) magnetic resonance (MR) images of the breast in 56 women (mean age, 55.6 years; age range, 37-74 years) diagnosed with estrogen receptor-positive breast cancer between 2005 and 2010. The study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. Primary tumors were assayed with a validated gene expression assay that provides a score for the likelihood of recurrence. A multiparametric imaging phenotype vector was extracted for each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear regression was performed to test associations between DCE MR imaging features and recurrence likelihood. To identify intrinsic imaging phenotypes, hierarchical clustering was performed on the extracted feature vectors. Multivariate logistic regression was used to classify tumors at high versus low or medium risk of recurrence. To determine the additional value of intrinsic phenotypes, the phenotype category was tested as an additional variable. Receiver operating characteristic analysis and the area under the receiver operating characteristic curve (Az) were used to assess classification performance.There was a moderate correlation (r = 0.71, R(2) = 0.50, P < .001) between DCE MR imaging features and the recurrence score. DCE MR imaging features were predictive of recurrence risk as determined by the surrogate assay, with an Az of 0.77 (P < .01). Four dominant imaging phenotypes were detected, with two including only low- and medium-risk tumors. When the phenotype category was used as an additional variable, the Az increased to 0.82 (P < .01).Intrinsic imaging phenotypes exist for breast cancer tumors and correlate with recurrence likelihood as determined with gene expression profiling. These imaging biomarkers could ultimately help guide treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppppp完成签到,获得积分10
4秒前
Darren发布了新的文献求助50
4秒前
闪闪元芹完成签到,获得积分10
7秒前
春江完成签到,获得积分10
9秒前
可爱的函函应助lql采纳,获得10
9秒前
我是老大应助yxy采纳,获得10
12秒前
14秒前
15秒前
Andy完成签到 ,获得积分10
18秒前
20秒前
20秒前
22秒前
ppppp发布了新的文献求助10
22秒前
26秒前
柯仇天发布了新的文献求助10
26秒前
鲸落发布了新的文献求助10
28秒前
33秒前
Master发布了新的文献求助20
37秒前
38秒前
juanjuan应助柯仇天采纳,获得10
38秒前
lige完成签到 ,获得积分10
39秒前
39秒前
40秒前
41秒前
王灿灿应助秋蚓采纳,获得50
42秒前
43秒前
44秒前
伊伊发布了新的文献求助30
46秒前
冷静沛白完成签到,获得积分10
47秒前
zoe发布了新的文献求助10
47秒前
背后书雪完成签到 ,获得积分10
48秒前
48秒前
小晞完成签到 ,获得积分10
49秒前
1huiqina发布了新的文献求助30
50秒前
51秒前
复杂大象完成签到,获得积分10
53秒前
独特觅翠完成签到 ,获得积分10
57秒前
59秒前
kkk驳回了iNk应助
1分钟前
bkagyin应助zoe采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023