Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles

医学 表型 乳腺癌 鉴定(生物学) 基因表达 基因 癌症 计算生物学 癌症研究 病理 遗传学 内科学 生物 植物
作者
Ahmed Ashraf,Dania Daye,Sara C. Gavenonis,Carolyn Mies,Michael D. Feldman,Mark Rosen,Despina Kontos
出处
期刊:Radiology [Radiological Society of North America]
卷期号:272 (2): 374-384 被引量:141
标识
DOI:10.1148/radiol.14131375
摘要

To present a method for identifying intrinsic imaging phenotypes in breast cancer tumors and to investigate their association with prognostic gene expression profiles.The authors retrospectively analyzed dynamic contrast material-enhanced (DCE) magnetic resonance (MR) images of the breast in 56 women (mean age, 55.6 years; age range, 37-74 years) diagnosed with estrogen receptor-positive breast cancer between 2005 and 2010. The study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. Primary tumors were assayed with a validated gene expression assay that provides a score for the likelihood of recurrence. A multiparametric imaging phenotype vector was extracted for each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear regression was performed to test associations between DCE MR imaging features and recurrence likelihood. To identify intrinsic imaging phenotypes, hierarchical clustering was performed on the extracted feature vectors. Multivariate logistic regression was used to classify tumors at high versus low or medium risk of recurrence. To determine the additional value of intrinsic phenotypes, the phenotype category was tested as an additional variable. Receiver operating characteristic analysis and the area under the receiver operating characteristic curve (Az) were used to assess classification performance.There was a moderate correlation (r = 0.71, R(2) = 0.50, P < .001) between DCE MR imaging features and the recurrence score. DCE MR imaging features were predictive of recurrence risk as determined by the surrogate assay, with an Az of 0.77 (P < .01). Four dominant imaging phenotypes were detected, with two including only low- and medium-risk tumors. When the phenotype category was used as an additional variable, the Az increased to 0.82 (P < .01).Intrinsic imaging phenotypes exist for breast cancer tumors and correlate with recurrence likelihood as determined with gene expression profiling. These imaging biomarkers could ultimately help guide treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素龙完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
褚子静完成签到,获得积分10
1秒前
1秒前
lcxw1224完成签到,获得积分10
1秒前
研友_8KAOBn完成签到,获得积分10
2秒前
高大莺发布了新的文献求助10
3秒前
oo关注了科研通微信公众号
3秒前
4秒前
qq完成签到 ,获得积分10
4秒前
onion发布了新的文献求助10
4秒前
春樹暮雲完成签到 ,获得积分10
4秒前
radio完成签到,获得积分10
4秒前
JamesPei应助云帆采纳,获得10
5秒前
lcxw1224发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
guozizi发布了新的文献求助10
7秒前
yuanzi完成签到,获得积分20
7秒前
孟博涵完成签到,获得积分10
7秒前
7秒前
科研通AI6应助nine2652采纳,获得10
7秒前
7秒前
灵巧的台灯完成签到,获得积分10
8秒前
radio发布了新的文献求助10
8秒前
8秒前
9秒前
动听黄豆完成签到,获得积分10
9秒前
10秒前
11秒前
小布完成签到,获得积分10
11秒前
花样年华发布了新的文献求助10
11秒前
11秒前
流萤发布了新的文献求助10
11秒前
AryaZzz完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283