Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles

医学 表型 乳腺癌 鉴定(生物学) 基因表达 基因 癌症 计算生物学 癌症研究 病理 遗传学 内科学 生物 植物
作者
Ahmed Ashraf,Dania Daye,Sara C. Gavenonis,Carolyn Mies,Michael D. Feldman,Mark Rosen,Despina Kontos
出处
期刊:Radiology [Radiological Society of North America]
卷期号:272 (2): 374-384 被引量:141
标识
DOI:10.1148/radiol.14131375
摘要

To present a method for identifying intrinsic imaging phenotypes in breast cancer tumors and to investigate their association with prognostic gene expression profiles.The authors retrospectively analyzed dynamic contrast material-enhanced (DCE) magnetic resonance (MR) images of the breast in 56 women (mean age, 55.6 years; age range, 37-74 years) diagnosed with estrogen receptor-positive breast cancer between 2005 and 2010. The study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. Primary tumors were assayed with a validated gene expression assay that provides a score for the likelihood of recurrence. A multiparametric imaging phenotype vector was extracted for each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear regression was performed to test associations between DCE MR imaging features and recurrence likelihood. To identify intrinsic imaging phenotypes, hierarchical clustering was performed on the extracted feature vectors. Multivariate logistic regression was used to classify tumors at high versus low or medium risk of recurrence. To determine the additional value of intrinsic phenotypes, the phenotype category was tested as an additional variable. Receiver operating characteristic analysis and the area under the receiver operating characteristic curve (Az) were used to assess classification performance.There was a moderate correlation (r = 0.71, R(2) = 0.50, P < .001) between DCE MR imaging features and the recurrence score. DCE MR imaging features were predictive of recurrence risk as determined by the surrogate assay, with an Az of 0.77 (P < .01). Four dominant imaging phenotypes were detected, with two including only low- and medium-risk tumors. When the phenotype category was used as an additional variable, the Az increased to 0.82 (P < .01).Intrinsic imaging phenotypes exist for breast cancer tumors and correlate with recurrence likelihood as determined with gene expression profiling. These imaging biomarkers could ultimately help guide treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉完成签到,获得积分10
刚刚
龙仔子完成签到,获得积分10
刚刚
刚刚
轻松土豆关注了科研通微信公众号
1秒前
2秒前
訣别完成签到 ,获得积分10
2秒前
fox完成签到,获得积分10
2秒前
科研通AI5应助asd采纳,获得10
2秒前
2秒前
韩飞完成签到,获得积分20
3秒前
3秒前
3秒前
龙仔子发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
淡淡朝阳完成签到,获得积分10
4秒前
补药学习发布了新的文献求助10
4秒前
上官若男应助专一的书雪采纳,获得10
4秒前
4秒前
轻松板栗关注了科研通微信公众号
4秒前
蓝胖子发布了新的文献求助10
5秒前
5秒前
5秒前
kyan完成签到,获得积分10
6秒前
李朋完成签到,获得积分10
6秒前
要懒死了hhh完成签到,获得积分10
6秒前
研究生发布了新的文献求助10
6秒前
6秒前
昏睡的绿海完成签到,获得积分10
6秒前
yue发布了新的文献求助10
7秒前
7秒前
乐乐应助123采纳,获得10
8秒前
8秒前
9秒前
简单的月饼完成签到 ,获得积分10
9秒前
大个应助xixi采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403