Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles

医学 表型 乳腺癌 鉴定(生物学) 基因表达 基因 癌症 计算生物学 癌症研究 病理 遗传学 内科学 生物 植物
作者
Ahmed Ashraf,Dania Daye,Sara C. Gavenonis,Carolyn Mies,Michael D. Feldman,Mark Rosen,Despina Kontos
出处
期刊:Radiology [Radiological Society of North America]
卷期号:272 (2): 374-384 被引量:141
标识
DOI:10.1148/radiol.14131375
摘要

To present a method for identifying intrinsic imaging phenotypes in breast cancer tumors and to investigate their association with prognostic gene expression profiles.The authors retrospectively analyzed dynamic contrast material-enhanced (DCE) magnetic resonance (MR) images of the breast in 56 women (mean age, 55.6 years; age range, 37-74 years) diagnosed with estrogen receptor-positive breast cancer between 2005 and 2010. The study was approved by the institutional review board and compliant with HIPAA. The requirement to obtain informed consent was waived. Primary tumors were assayed with a validated gene expression assay that provides a score for the likelihood of recurrence. A multiparametric imaging phenotype vector was extracted for each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear regression was performed to test associations between DCE MR imaging features and recurrence likelihood. To identify intrinsic imaging phenotypes, hierarchical clustering was performed on the extracted feature vectors. Multivariate logistic regression was used to classify tumors at high versus low or medium risk of recurrence. To determine the additional value of intrinsic phenotypes, the phenotype category was tested as an additional variable. Receiver operating characteristic analysis and the area under the receiver operating characteristic curve (Az) were used to assess classification performance.There was a moderate correlation (r = 0.71, R(2) = 0.50, P < .001) between DCE MR imaging features and the recurrence score. DCE MR imaging features were predictive of recurrence risk as determined by the surrogate assay, with an Az of 0.77 (P < .01). Four dominant imaging phenotypes were detected, with two including only low- and medium-risk tumors. When the phenotype category was used as an additional variable, the Az increased to 0.82 (P < .01).Intrinsic imaging phenotypes exist for breast cancer tumors and correlate with recurrence likelihood as determined with gene expression profiling. These imaging biomarkers could ultimately help guide treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的夏槐完成签到,获得积分10
1秒前
2秒前
3秒前
Arui发布了新的文献求助20
3秒前
4秒前
4秒前
sopha完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Lian发布了新的文献求助10
5秒前
wanci应助tyx采纳,获得10
5秒前
愉快的秋柔完成签到,获得积分10
6秒前
CipherSage应助任性的忆南采纳,获得10
6秒前
8秒前
8秒前
天天向上发布了新的文献求助10
9秒前
9秒前
ll应助JJQ采纳,获得10
9秒前
12秒前
FashionBoy应助aaaaaa采纳,获得10
12秒前
13秒前
Bao发布了新的文献求助10
14秒前
14秒前
14秒前
王王完成签到 ,获得积分10
15秒前
fuje发布了新的文献求助30
15秒前
小猪猪饲养员完成签到,获得积分10
15秒前
15秒前
教生物的杨教授完成签到,获得积分10
16秒前
16秒前
和平发展完成签到,获得积分10
16秒前
Cameron完成签到,获得积分0
17秒前
烟花应助张老师采纳,获得10
17秒前
nemo完成签到,获得积分20
17秒前
w王w发布了新的文献求助10
18秒前
18秒前
麦乐迪应助jerry采纳,获得10
19秒前
天天快乐应助jerry采纳,获得10
19秒前
英俊水池发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421