清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rethinking Mental Illness

医学 精神疾病 精神科 心理健康
作者
Thomas R. Insel,Philip S. Wang
出处
期刊:JAMA [American Medical Association]
卷期号:303 (19): 1970-1970 被引量:206
标识
DOI:10.1001/jama.2010.555
摘要

IN THE FIRST 2010 ISSUE OF NATURE, THE EDITOR, PHILIP Campbell, suggested that the next 10-year period is likely to be the “decade for psychiatric disorders.” This was not a prediction of an epidemic, although mental illnesses are highly prevalent, nor a suggestion that new illnesses would emerge. The key point was that research on mental illness was, at long last, reaching an inflection point at which insights gained from genetics and neuroscience would transform the understanding of psychiatric illnesses. The insights are indeed coming fast and furious. In this Commentary, we suggest ways in which genomics and neuroscience can help reconceptualize disorders of the mind as disorders of the brain and thereby transform the practice of psychiatry. Compelling reasons to look for genes that confer risk for mental illness come from twin studies demonstrating high heritability for autism, schizophrenia, and bipolar disorder. Although there have been notable findings from linkage and genome-wide association studies, with candidate genes and specific alleles identified for each of the major mental disorders, those that have been replicated explain only a fraction of the heritability. Where is the missing genetic signal for mental illness? The discovery that large ( 1 megabase) structural or copy number variants, such as deletions and duplications, are 10fold more common in autism and schizophrenia is an important clue. Copy number variants are individually rare, sometimes restricted to a single family or developing de novo in an individual. Although “private mutations” are rare (reminiscent of Tolstoy’s dictum that “each unhappy family is unhappy in its own way”), they are in aggregate remarkably common, spread across vast expanses of the genome, and ultimately could explain more genetic risk than common variants. Although many of the genes implicated are involved in brain development, copy number variants do not appear to be specific for illnesses in the current diagnostic scheme. Within families, the same copy number variant may be associated with schizophrenia in one person, bipolar disorder in another, and attention-deficit/hyperactivity disorder in yet another. The genetics of mental illness may really be the genetics of brain development, with different outcomes possible, depending on the biological and environmental context. The same twin studies that point to high heritability also demonstrate the limits of genetics: environmental factors must be important for mental disorders. The advent of epigenomics, which can detect the molecular effects of experience, may provide a powerful approach for understanding the critical effects of early-life events and environment on adult patterns of behavior. Epigenomics can now map changes across the entire genome with unbiased, highthroughput technologies and point to the mechanisms by which experience confers enduring changes in gene expression and, ultimately, changes in brain activity and function. Epigenomic modifications that alter transcription may also be a mechanism for mental illness, even in the absence of common or rare structural variants. For instance, a rare copy number variant detected in autism deletes the oxytocin receptor gene. In many individuals with autism who do not have this deletion, epigenomic modifications appear to silence this gene. Genomics and epigenomics already point to diverse molecular pathways that confer risk of mental illness. What binds these diverse molecular mechanisms together to yield clusters of symptoms recognized as the syndromes of psychiatric disorders? Increasingly, clinical neuroscientists are identifying specific circuits for major aspects of illness. But just as the genetic variants do not map selectively onto current diagnostic categories, so, also, circuits seem to be associated with cognitive and behavioral functions, without a oneto-one correspondence to diagnosis. For instance, the neural basis of extinction learning, which was first mapped in the rat brain, appears to be conserved in the human brain, with key nodes including ventromedial prefrontal cortex, amygdala, and hippocampus. Rather than defining the biology of a single illness, extinction is an important feature of posttraumatic stress disorder, obsessive-compulsive disorder, and various phobias. Two noteworthy points are emerging from systems neuroscience. First, there seem to be emerging relationships between genetic variation and development of neural circuits that mediate complex cognition and behavior, from reward to emotion regulation. Second, the current diagnos-
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianshanfeihe完成签到 ,获得积分10
4秒前
雯雯完成签到 ,获得积分10
29秒前
千里草完成签到,获得积分10
59秒前
1分钟前
人间生巧发布了新的文献求助10
1分钟前
人间生巧完成签到,获得积分10
1分钟前
吃瓜米吃瓜米完成签到 ,获得积分10
1分钟前
4分钟前
maclogos完成签到,获得积分10
4分钟前
zzzzzz完成签到 ,获得积分10
4分钟前
DF发布了新的文献求助10
4分钟前
赘婿应助DF采纳,获得10
4分钟前
莃莃莃喜欢你完成签到 ,获得积分10
5分钟前
mingjiang完成签到,获得积分10
6分钟前
mingjiang发布了新的文献求助10
6分钟前
laohei94_6完成签到 ,获得积分10
6分钟前
野性的柠檬发布了新的文献求助200
6分钟前
深情的路灯完成签到 ,获得积分10
7分钟前
野性的柠檬完成签到,获得积分10
8分钟前
枯叶蝶完成签到 ,获得积分10
8分钟前
南星完成签到 ,获得积分10
8分钟前
8分钟前
mszalajko发布了新的文献求助10
8分钟前
drhwang完成签到,获得积分10
8分钟前
9分钟前
虞傲儿发布了新的文献求助50
9分钟前
赘婿应助科研通管家采纳,获得10
9分钟前
fhw完成签到 ,获得积分10
9分钟前
从容向真完成签到,获得积分10
9分钟前
丘比特应助li采纳,获得10
9分钟前
mszalajko完成签到,获得积分20
9分钟前
群山完成签到 ,获得积分10
10分钟前
10分钟前
顾矜应助Dr.Zhang采纳,获得10
11分钟前
殷勤的紫槐完成签到,获得积分0
11分钟前
li完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
高高的丹雪完成签到 ,获得积分0
11分钟前
Dr.Zhang发布了新的文献求助10
11分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211580
求助须知:如何正确求助?哪些是违规求助? 4388019
关于积分的说明 13663423
捐赠科研通 4248173
什么是DOI,文献DOI怎么找? 2330780
邀请新用户注册赠送积分活动 1328546
关于科研通互助平台的介绍 1281567