清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rethinking Mental Illness

医学 精神疾病 精神科 心理健康
作者
Thomas R. Insel,Philip S. Wang
出处
期刊:JAMA [American Medical Association]
卷期号:303 (19): 1970-1970 被引量:206
标识
DOI:10.1001/jama.2010.555
摘要

IN THE FIRST 2010 ISSUE OF NATURE, THE EDITOR, PHILIP Campbell, suggested that the next 10-year period is likely to be the “decade for psychiatric disorders.” This was not a prediction of an epidemic, although mental illnesses are highly prevalent, nor a suggestion that new illnesses would emerge. The key point was that research on mental illness was, at long last, reaching an inflection point at which insights gained from genetics and neuroscience would transform the understanding of psychiatric illnesses. The insights are indeed coming fast and furious. In this Commentary, we suggest ways in which genomics and neuroscience can help reconceptualize disorders of the mind as disorders of the brain and thereby transform the practice of psychiatry. Compelling reasons to look for genes that confer risk for mental illness come from twin studies demonstrating high heritability for autism, schizophrenia, and bipolar disorder. Although there have been notable findings from linkage and genome-wide association studies, with candidate genes and specific alleles identified for each of the major mental disorders, those that have been replicated explain only a fraction of the heritability. Where is the missing genetic signal for mental illness? The discovery that large ( 1 megabase) structural or copy number variants, such as deletions and duplications, are 10fold more common in autism and schizophrenia is an important clue. Copy number variants are individually rare, sometimes restricted to a single family or developing de novo in an individual. Although “private mutations” are rare (reminiscent of Tolstoy’s dictum that “each unhappy family is unhappy in its own way”), they are in aggregate remarkably common, spread across vast expanses of the genome, and ultimately could explain more genetic risk than common variants. Although many of the genes implicated are involved in brain development, copy number variants do not appear to be specific for illnesses in the current diagnostic scheme. Within families, the same copy number variant may be associated with schizophrenia in one person, bipolar disorder in another, and attention-deficit/hyperactivity disorder in yet another. The genetics of mental illness may really be the genetics of brain development, with different outcomes possible, depending on the biological and environmental context. The same twin studies that point to high heritability also demonstrate the limits of genetics: environmental factors must be important for mental disorders. The advent of epigenomics, which can detect the molecular effects of experience, may provide a powerful approach for understanding the critical effects of early-life events and environment on adult patterns of behavior. Epigenomics can now map changes across the entire genome with unbiased, highthroughput technologies and point to the mechanisms by which experience confers enduring changes in gene expression and, ultimately, changes in brain activity and function. Epigenomic modifications that alter transcription may also be a mechanism for mental illness, even in the absence of common or rare structural variants. For instance, a rare copy number variant detected in autism deletes the oxytocin receptor gene. In many individuals with autism who do not have this deletion, epigenomic modifications appear to silence this gene. Genomics and epigenomics already point to diverse molecular pathways that confer risk of mental illness. What binds these diverse molecular mechanisms together to yield clusters of symptoms recognized as the syndromes of psychiatric disorders? Increasingly, clinical neuroscientists are identifying specific circuits for major aspects of illness. But just as the genetic variants do not map selectively onto current diagnostic categories, so, also, circuits seem to be associated with cognitive and behavioral functions, without a oneto-one correspondence to diagnosis. For instance, the neural basis of extinction learning, which was first mapped in the rat brain, appears to be conserved in the human brain, with key nodes including ventromedial prefrontal cortex, amygdala, and hippocampus. Rather than defining the biology of a single illness, extinction is an important feature of posttraumatic stress disorder, obsessive-compulsive disorder, and various phobias. Two noteworthy points are emerging from systems neuroscience. First, there seem to be emerging relationships between genetic variation and development of neural circuits that mediate complex cognition and behavior, from reward to emotion regulation. Second, the current diagnos-
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆··发布了新的文献求助20
1秒前
4秒前
淡淡醉波wuliao完成签到 ,获得积分0
9秒前
小蘑菇应助弯弯的小河采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
21秒前
37秒前
Aaron发布了新的文献求助10
38秒前
CodeCraft应助Betty采纳,获得10
41秒前
土豆··完成签到,获得积分10
54秒前
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
Betty发布了新的文献求助10
1分钟前
汉堡包应助Sinner采纳,获得10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
2分钟前
lanxinge完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Sinner发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
xhcccc发布了新的文献求助20
3分钟前
SciGPT应助跳跃的代曼采纳,获得10
3分钟前
Yolo完成签到 ,获得积分10
3分钟前
3分钟前
跳跃的代曼完成签到,获得积分10
3分钟前
4分钟前
xhcccc完成签到,获得积分10
4分钟前
白天亮完成签到,获得积分10
4分钟前
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
爆米花应助bju采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167279
捐赠科研通 3248691
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652