An Active Contour Model Based on Texture Distribution for Extracting Inhomogeneous Insulators From Aerial Images

活动轮廓模型 最大值和最小值 人工智能 能量最小化 计算机科学 维数之咒 分割 缩小 图像分割 像素 能量泛函 模式识别(心理学) 算法 纹理(宇宙学) 特征(语言学) 计算机视觉 数学 图像(数学) 物理 数学分析 语言学 哲学 量子力学 程序设计语言
作者
Qinggang Wu,Jubai An
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 3613-3626 被引量:93
标识
DOI:10.1109/tgrs.2013.2274101
摘要

The objects in natural images are often texturally inhomogeneous and prone to be falsely segmented into different parts by conventional methods. To overcome the difficulties caused by texture inhomogeneity, a new active contour model is proposed to extract inhomogeneous insulators from aerial images. First, a semilocal operator is employed to extract the texture features of insulators under the Beltrami framework. The layer of semilocal texture feature is single, and thus, it can avoid the high dimensionality of feature space. Then, a new convex energy functional is defined by taking the Xie's nonconvex model into a global minimization active contour framework during the process of segmentation. The proposed energy functional consists of not only the semilocal texture features of insulators but also their spatial relationship, which improves its ability to deal with textural inhomogeneity. Moreover, it can also avoid the existence of local minima in the minimization of the Xie's nonconvex model, thereby being independent of initial contour. In the process of contour evolution and numerical minimization, a fast dual formulation is employed to overcome the drawbacks of the usual level set and gradient descent method and to make the evolution of the contour more efficient. The experimental results on aerial insulator images confirm the ability of the proposed algorithm to effectively segment inhomogeneous textures with an overall average rmse of 1.87 pixels, a precision of 85.59%, and a recall of 86.47%. In addition, the proposed algorithm is extended to animal images, and satisfactory segmentation results can be obtained as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助6666采纳,获得10
1秒前
tuntunliu完成签到,获得积分10
1秒前
2秒前
2秒前
张道恒完成签到,获得积分10
3秒前
4秒前
5秒前
简单的芷云完成签到,获得积分10
5秒前
Chenly完成签到,获得积分10
5秒前
刺猬发布了新的文献求助10
6秒前
香蕉觅云应助不吃湘菜采纳,获得10
6秒前
勤劳绿毛龟完成签到,获得积分10
7秒前
英姑应助7777采纳,获得10
7秒前
任性冰凡完成签到,获得积分10
8秒前
8秒前
可靠画笔发布了新的文献求助10
8秒前
外向易形完成签到,获得积分20
8秒前
8秒前
林慕然2023发布了新的文献求助10
9秒前
战红缨发布了新的文献求助10
10秒前
YANGLan发布了新的文献求助10
11秒前
单身的钻石完成签到,获得积分10
13秒前
quhayley应助LSS采纳,获得10
16秒前
hukun完成签到,获得积分10
16秒前
Ava应助刺猬采纳,获得10
16秒前
16秒前
17秒前
Ava应助子车半烟采纳,获得10
19秒前
19秒前
小蘑菇应助dw采纳,获得10
19秒前
19秒前
SUN发布了新的文献求助10
21秒前
云瑾应助范同学采纳,获得10
22秒前
22秒前
22秒前
噜啦啦完成签到,获得积分10
23秒前
CodeCraft应助酷酷萃采纳,获得10
23秒前
林慕然2023发布了新的文献求助10
24秒前
xxc关注了科研通微信公众号
25秒前
彭于彦祖应助花花采纳,获得30
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685