Ductile crystalline–amorphous nanolaminates

材料科学 缩颈 非晶态金属 复合材料 无定形固体 极限抗拉强度 纳米晶材料 延展性(地球科学) 可塑性 晶界 剪切带 冶金 微观结构 结晶学 纳米技术 合金 蠕动 化学
作者
Yinmin Wang,Ju Li,A. V. Hamza,Troy W. Barbee
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:104 (27): 11155-11160 被引量:419
标识
DOI:10.1073/pnas.0702344104
摘要

It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 ± 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 ± 1.7%, which is six to eight times higher than that typically observed in conventional crystalline–crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
噗噗个噗发布了新的文献求助10
1秒前
兰亭序发布了新的文献求助10
1秒前
LiLi完成签到,获得积分10
1秒前
墨曦完成签到,获得积分10
1秒前
如意天荷完成签到,获得积分10
2秒前
科研通AI2S应助LELE采纳,获得10
2秒前
英俊的铭应助风趣夜云采纳,获得10
2秒前
尘闲完成签到,获得积分10
2秒前
joiawhrfoiwea发布了新的文献求助10
3秒前
3秒前
3秒前
Cynthia完成签到,获得积分10
3秒前
3秒前
hky发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
浅尝离白应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
genomed应助科研通管家采纳,获得20
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
rosalieshi应助科研通管家采纳,获得100
4秒前
loren完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
zyfqpc应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
浅尝离白应助科研通管家采纳,获得10
5秒前
5秒前
ding应助多背单词采纳,获得10
5秒前
111完成签到,获得积分10
5秒前
酷波er应助夜之枫采纳,获得10
5秒前
小高同学发布了新的文献求助10
5秒前
光亮友安发布了新的文献求助10
5秒前
evelyn发布了新的文献求助10
8秒前
不吃香菜完成签到,获得积分10
8秒前
希望天下0贩的0应助尘闲采纳,获得10
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449