材料科学
聚二甲基硅氧烷
薄膜
碳纳米纤维
激光器
炭黑
复合材料
复合数
传感器
光电子学
光学
碳纳米管
纳米技术
声学
物理
天然橡胶
作者
Bao-Yu Hsieh,Jin-Wook Kim,Jiadeng Zhu,Sibo Li,Xiangwu Zhang,Xiaoning Jiang
摘要
The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMS composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10−3 Pa/(W/m2), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI