Toward singlet fission for excitonic solar cells

单重态裂变 系统间交叉 单重态 激发态 光化学 三重态 发色团 分子内力 化学 内部转换 有机半导体 化学物理 原子物理学 分子物理学 电子 物理 立体化学 量子力学 有机化学
作者
Josef Michl,Arthur J. Nozik,Xudong Chen,Justin C. Johnson,G. C. Rana,Akın Akdağ,Andrew F. Schwerin
出处
期刊:Proceedings of SPIE 卷期号:6656: 66560E-66560E 被引量:18
标识
DOI:10.1117/12.735591
摘要

Sensitizer dyes capable of producing two triplet excited states from a singlet excited state produced by the absorption of a single photon would allow an increase of the efficiency of photovoltaic cells by up to a factor of 1.5, provided that each triplet injects an electron into a semiconductor such as TiO2. Although singlet fission in certain crystals and polymers was reported long ago, little is known about its efficiency in dyes suitable for use as sensitizers of photoinduced charge separation on semiconductors surfaces. Biradicaloids and large alternant hydrocarbons are desirable parent structures likely to meet the requirement E(T2), E(S1) > 2E(T1) for the excitation energies of the lowest excited singlet (S1) and the two triplet (T1, T2) states. We report results for 1,3-diphenylisobenzofuran, a model compound of the biradicaloid type. Its energy levels satisfy the desired relation, and in solution it shows no triplet formation by intersystem crossing. In the neat solid state, it forms triplets efficiently, and indirect evidence suggests that this is due to singlet fission. This appears to be the first compound displaying SF by design. When two such chromophores were combined into dimers, triplet formation yields of up to 9% were observed in polar solvents, possibly due to singlet fission, but possibly due to intersystem crossing. The triplet formation occurs in two steps, via an intermediate assigned as an intramolecular charge-transfer state and responsible for most of the observed excitation loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助侯筱涵采纳,获得10
1秒前
我心永恒完成签到,获得积分10
1秒前
2秒前
2秒前
curry发布了新的文献求助10
3秒前
木棉完成签到,获得积分10
3秒前
3秒前
风风风发布了新的文献求助10
4秒前
水果完成签到,获得积分10
4秒前
宝宝巴士完成签到 ,获得积分20
4秒前
英姑应助mini采纳,获得10
4秒前
4秒前
传奇3应助机灵的冰珍采纳,获得10
5秒前
Edddddy发布了新的文献求助10
5秒前
343386625完成签到,获得积分10
5秒前
5秒前
yaoyaoyu完成签到 ,获得积分10
6秒前
XiaoYuuu完成签到,获得积分10
6秒前
乐乐应助郭飒采纳,获得10
7秒前
bcc666发布了新的文献求助10
7秒前
8秒前
安安应助单纯以云采纳,获得10
8秒前
荷兰香猪完成签到,获得积分10
8秒前
信wz发布了新的文献求助10
9秒前
爆米花应助ST采纳,获得10
9秒前
侯筱涵完成签到,获得积分20
9秒前
Usin完成签到,获得积分10
9秒前
邓李梅完成签到,获得积分10
9秒前
wing完成签到 ,获得积分10
9秒前
开朗孤兰完成签到,获得积分10
10秒前
nh发布了新的文献求助10
11秒前
HBin完成签到,获得积分10
11秒前
脑洞疼应助辛勤芷天采纳,获得10
11秒前
无敌通发布了新的文献求助10
12秒前
12秒前
毕长富完成签到,获得积分10
13秒前
我爱吃小布丁你呢完成签到 ,获得积分10
14秒前
Anima应助bcc666采纳,获得10
14秒前
土块完成签到 ,获得积分10
14秒前
英俊的铭应助zmick采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152