Blind Deconvolution of Medical Ultrasound Images: A Parametric Inverse Filtering Approach

盲反褶积 反褶积 逆滤波器 反问题 点扩散函数 参数统计 计算机科学 子空间拓扑 滤波器(信号处理) 维纳反褶积 图像复原 光传递函数 数学 算法 反向 人工智能 图像处理 计算机视觉 图像(数学) 统计 几何学 数学分析
作者
Oleg Michailovich,Allen Tannenbaum
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:16 (12): 3005-3019 被引量:128
标识
DOI:10.1109/tip.2007.910179
摘要

The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫等闲完成签到,获得积分10
刚刚
2秒前
yan发布了新的文献求助10
2秒前
ll应助yeape采纳,获得10
3秒前
dudu发布了新的文献求助10
4秒前
刘澳发布了新的文献求助10
6秒前
烟花应助科研鸟采纳,获得10
6秒前
坚定的靖巧完成签到,获得积分10
8秒前
忧虑的安青完成签到,获得积分20
10秒前
科研通AI5应助yan采纳,获得10
11秒前
13秒前
13秒前
汉堡包应助dophin采纳,获得10
13秒前
14秒前
脑洞疼应助dudu采纳,获得10
14秒前
Miriammmmm发布了新的文献求助10
14秒前
刘澳完成签到,获得积分10
16秒前
小凡发布了新的文献求助10
17秒前
炙热的磬发布了新的文献求助10
17秒前
隐形曼青应助巴斯光年采纳,获得10
19秒前
wanci应助峪星采纳,获得10
21秒前
打打应助得之我幸采纳,获得10
22秒前
烤鸭本鸭完成签到,获得积分10
23秒前
gj2221423完成签到 ,获得积分10
25秒前
Jovid完成签到,获得积分10
26秒前
呱牛完成签到,获得积分10
27秒前
Towne完成签到,获得积分10
28秒前
奇奇云发布了新的文献求助30
28秒前
seeuu驳回了思源应助
31秒前
Chandler完成签到,获得积分10
31秒前
Kvolu29发布了新的文献求助30
31秒前
32秒前
33秒前
33秒前
大个应助yian采纳,获得10
34秒前
SYLH应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得30
34秒前
华仔应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388