Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities

分解水 纳米技术 半导体 材料科学 基质(水族馆) 能量转换 纳米尺度 太阳能转换 太阳能 工程物理 工程类 电气工程 光电子学 催化作用 光催化 化学 物理 热力学 生物化学 海洋学 地质学
作者
Min Zhou,Xiong Wen David Lou,Yi Xie
出处
期刊:Nano Today [Elsevier]
卷期号:8 (6): 598-618 被引量:319
标识
DOI:10.1016/j.nantod.2013.12.002
摘要

In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. The performance of advanced PEC devices is fundamentally related to the semiconductor photoelectrode design at the nanoscale. Among various architectures, two-dimensional (2D) nanosheets with thickness generally below 100 nm hold great promise for highly efficient PEC water splitting. Hence, this article mainly provides a comprehensive review of current research efforts that focus on the scientific and technological possibilities of using 2D nanosheets to fabricate efficient photoelectrodes for PEC water splitting, followed by a concise overview of the state-of-the-art progress of 2D nanosheets, where we also present a discussion of how to overcome the challenges that have prevented realizing the full potential of 2D nanosheets. Particular attention is paid on two major approaches. One is to align nanosheets directly on the substrate to maximize the morphological advantages of 2D nanosheets. The other is to further reduce the thickness of common 2D nanosheets to single or a few atomic layers aiming at regulating the intrinsic physical and chemical properties for PEC water splitting. Both of the approaches have led to excellent improvements on PEC performance and greatly broaden the knowledge about where and how the existing semiconductor materials can be used in solar energy-related applications. It is hence envisioned that 2D nanosheets can offer wide opportunities and perspectives on the directions toward high-efficiency solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段采萱发布了新的文献求助10
1秒前
umi发布了新的文献求助10
1秒前
HAHA发布了新的文献求助10
2秒前
Astronaut完成签到,获得积分10
2秒前
你猜完成签到,获得积分10
3秒前
JIE发布了新的文献求助10
4秒前
清秀凡霜完成签到,获得积分10
4秒前
唠叨的翅膀完成签到,获得积分10
5秒前
umi发布了新的文献求助10
5秒前
张春完成签到,获得积分10
5秒前
hxx完成签到,获得积分10
7秒前
瑞瑞完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
HAHA完成签到,获得积分10
8秒前
隐形曼青应助自由度采纳,获得10
8秒前
tian完成签到,获得积分10
8秒前
典雅的雪糕完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
可爱的函函应助南南采纳,获得10
12秒前
12秒前
12秒前
GuSiwen发布了新的文献求助10
12秒前
犹豫的夜完成签到,获得积分10
13秒前
13秒前
慎独完成签到,获得积分10
13秒前
窦如花完成签到 ,获得积分10
13秒前
13秒前
XIUXIU发布了新的文献求助10
13秒前
linkman完成签到,获得积分20
13秒前
TTTTT应助加菲丰丰采纳,获得10
13秒前
开心的自行车完成签到,获得积分10
13秒前
小蓝人发布了新的文献求助10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022