蛋白质组学
脂质代谢
阿尔法(金融)
电离辐射
过氧化物酶体增殖物激活受体α
生物
蛋白质组
过氧化物酶体增殖物激活受体
氧化磷酸化
内科学
磷酸化
内分泌学
核受体
细胞生物学
医学
受体
生物信息学
生物化学
转录因子
基因
辐照
物理
护理部
核物理学
结构效度
患者满意度
作者
Omid Azimzadeh,Wolfgang Sievert,Hakan Sarioglu,Ramesh Yentrapalli,Žarko Barjaktarović,Arundhathi Sriharshan,Marius Ueffing,Dirk Janik,Michaela Aichler,Michael J. Atkinson,Gabriele Multhoff,Soile Tapio
摘要
Radiation exposure of the thorax is associated with a markedly increased risk of cardiac morbidity and mortality with a latency period of decades. Although many studies have confirmed the damaging effect of ionizing radiation on the myocardium and cardiac endothelial structure and function, the molecular mechanism behind this damage is not yet elucidated. Peroxisome proliferator-activated receptor alpha (PPAR alpha), a transcriptional regulator of lipid metabolism in heart tissue, has recently received great attention in the development of cardiovascular disease. The goal of this study was to investigate radiation-induced cardiac damage in general and the role of PPAR alpha in this process in particular. C57BL/6 mice received local heart irradiation with X-ray doses of 8 and 16 gray (Gy) at the age of 8 weeks. The mice were sacrificed 16 weeks later. Radiation-induced changes in the cardiac proteome were quantified using the Isotope Coded Protein Label (ICPL) method followed by mass spectrometry and software analysis. Significant alterations were observed in proteins involved in lipid metabolism and oxidative phosphorylation. Ionizing radiation markedly changed the phosphorylation and ubiquitination status of PPAR alpha. This was reflected as decreased expression of its target genes involved in energy metabolism and mitochondrial respiratory chain confirming the proteomics data. This study suggests that persistent alteration of cardiac metabolism due to impaired PPAR alpha activity contributes to the heart pathology after radiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI