Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images

人工智能 分割 计算机科学 卷积神经网络 深度学习 图像分割 模式识别(心理学) 豪斯多夫距离 计算机视觉
作者
Davood Karimi,Qi Zeng,Prateek Mathur,Apeksha Avinash,S. Sara Mahdavi,Ingrid Spadinger,Purang Abolmaesumi,Septimiu E. Salcudean
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:57: 186-196 被引量:95
标识
DOI:10.1016/j.media.2019.07.005
摘要

• Uncertainty estimation can benefit deep learning-based medical image segmentation. • Disagreement among an ensemble of models provides a good estimation of uncertainty. • Prior shape information can improve uncertain prostate segmentations in ultrasound. • Uncertainty in medical image segmentation is more due to limited data than noise. The goal of this work was to develop a method for accurate and robust automatic segmentation of the prostate clinical target volume in transrectal ultrasound (TRUS) images for brachytherapy. These images can be difficult to segment because of weak or insufficient landmarks or strong artifacts. We devise a method, based on convolutional neural networks (CNNs), that produces accurate segmentations on easy and difficult images alike. We propose two strategies to achieve improved segmentation accuracy on difficult images. First, for CNN training we adopt an adaptive sampling strategy, whereby the training process is encouraged to pay more attention to images that are difficult to segment. Secondly, we train a CNN ensemble and use the disagreement among this ensemble to identify uncertain segmentations and to estimate a segmentation uncertainty map. We improve uncertain segmentations by utilizing the prior shape information in the form of a statistical shape model. Our method achieves Hausdorff distance of 2.7 ± 2.3 mm and Dice score of 93.9 ± 3.5%. Comparisons with several competing methods show that our method achieves significantly better results and reduces the likelihood of committing large segmentation errors. Furthermore, our experiments show that our approach to estimating segmentation uncertainty is better than or on par with recent methods for estimation of prediction uncertainty in deep learning models. Our study demonstrates that estimation of model uncertainty and use of prior shape information can significantly improve the performance of CNN-based medical image segmentation methods, especially on difficult images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jou完成签到,获得积分10
2秒前
心海完成签到,获得积分20
2秒前
3秒前
Li发布了新的文献求助10
3秒前
钟旭完成签到,获得积分10
4秒前
8464368发布了新的文献求助10
5秒前
luo发布了新的文献求助10
5秒前
专注大白菜真实的钥匙完成签到,获得积分10
5秒前
T拐拐发布了新的文献求助10
5秒前
钟旭发布了新的文献求助10
6秒前
6秒前
8秒前
心海发布了新的文献求助10
8秒前
冬虫夏草发布了新的文献求助10
9秒前
10秒前
FashionBoy应助叶听枫采纳,获得10
10秒前
陈文青发布了新的文献求助10
12秒前
明亮兔子完成签到,获得积分20
12秒前
戴岱完成签到,获得积分10
12秒前
13秒前
13秒前
虚心岂愈完成签到,获得积分10
14秒前
和谐的曼云完成签到,获得积分10
15秒前
xzh086完成签到,获得积分10
15秒前
margine发布了新的文献求助10
15秒前
17秒前
小二郎应助DW采纳,获得10
18秒前
18秒前
18秒前
18秒前
如意歌曲发布了新的文献求助10
18秒前
拼搏的听寒完成签到,获得积分20
20秒前
22秒前
Hello应助翟如风采纳,获得10
22秒前
俭朴蜜蜂完成签到 ,获得积分10
23秒前
23秒前
赵雪发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160183
求助须知:如何正确求助?哪些是违规求助? 2811217
关于积分的说明 7891442
捐赠科研通 2470335
什么是DOI,文献DOI怎么找? 1315418
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038