Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network

计算机科学 人工智能 基本事实 分割 卷积神经网络 Sørensen–骰子系数 模式识别(心理学) 交叉口(航空) 深度学习 人工神经网络 生成对抗网络 感兴趣区域 二元分类 计算机视觉 图像分割 支持向量机 工程类 航空航天工程
作者
Vivek Kumar Singh,Hatem A. Rashwan,Santiago Romaní,Farhan Akram,Nidhi Pandey,Md. Mostafa Kamal Sarker,Adel Saleh,Meritxell Arenas,M. Árquez,Domènec Puig,Jordina Torrents‐Barrena
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:139: 112855-112855 被引量:198
标识
DOI:10.1016/j.eswa.2019.112855
摘要

Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tumors, which portray crucial morphological information that will support reliable diagnosis. In this paper, we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tumor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distinguish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to create binary masks as realistic as possible. The cGAN works well even when the number of training samples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and a private in-house dataset. The proposed segmentation model, working on an image crop containing the tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy of 80%, which outperforms the current state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助蛋黄苏采纳,获得10
4秒前
香蕉觅云应助GK采纳,获得10
4秒前
6秒前
8秒前
10秒前
郝宝真发布了新的文献求助10
11秒前
安逸1发布了新的文献求助10
13秒前
LYY完成签到,获得积分10
15秒前
亮仔完成签到,获得积分10
20秒前
21秒前
内向的小凡完成签到,获得积分10
21秒前
半夏完成签到,获得积分10
22秒前
22秒前
23秒前
安逸1发布了新的文献求助10
25秒前
墨倾池发布了新的文献求助10
25秒前
缥缈的芷卉完成签到,获得积分20
25秒前
向雅完成签到,获得积分10
27秒前
GK发布了新的文献求助10
27秒前
感性的夜玉完成签到,获得积分10
29秒前
酷波er应助安逸1采纳,获得10
33秒前
34秒前
胖橘梨花逻辑猫完成签到 ,获得积分10
38秒前
laura完成签到,获得积分10
39秒前
笨鸟一直飞完成签到,获得积分10
40秒前
41秒前
赘婿应助科研通管家采纳,获得30
41秒前
41秒前
ding应助科研通管家采纳,获得10
41秒前
星辰大海应助科研通管家采纳,获得10
41秒前
李健应助科研通管家采纳,获得10
41秒前
Lucas应助科研通管家采纳,获得10
42秒前
111发布了新的文献求助10
45秒前
善学以致用应助GK采纳,获得10
47秒前
47秒前
50秒前
淡然的衣发布了新的文献求助20
51秒前
坚强白玉完成签到,获得积分10
51秒前
安逸1发布了新的文献求助10
53秒前
luo完成签到,获得积分20
55秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388