Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network

计算机科学 人工智能 基本事实 分割 卷积神经网络 Sørensen–骰子系数 模式识别(心理学) 交叉口(航空) 深度学习 人工神经网络 生成对抗网络 感兴趣区域 二元分类 计算机视觉 图像分割 支持向量机 工程类 航空航天工程
作者
Vivek Kumar Singh,Hatem A. Rashwan,Santiago Romaní,Farhan Akram,Nidhi Pandey,Md. Mostafa Kamal Sarker,Adel Saleh,Meritxell Arenas,M. Árquez,Domènec Puig,Jordina Torrents‐Barrena
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:139: 112855-112855 被引量:198
标识
DOI:10.1016/j.eswa.2019.112855
摘要

Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tumors, which portray crucial morphological information that will support reliable diagnosis. In this paper, we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tumor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distinguish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to create binary masks as realistic as possible. The cGAN works well even when the number of training samples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and a private in-house dataset. The proposed segmentation model, working on an image crop containing the tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy of 80%, which outperforms the current state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小喵完成签到,获得积分10
1秒前
CipherSage应助寒天采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
华仔应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
da发布了新的文献求助10
3秒前
SYSUer发布了新的文献求助10
5秒前
111发布了新的文献求助10
6秒前
6秒前
6秒前
感动的红酒应助余健采纳,获得10
7秒前
Han发布了新的文献求助10
8秒前
111发布了新的文献求助10
8秒前
8秒前
jozz完成签到 ,获得积分10
8秒前
9秒前
伊可完成签到 ,获得积分10
10秒前
10秒前
11秒前
hahhhah发布了新的文献求助10
11秒前
11秒前
英俊的铭应助Dasiliy采纳,获得10
12秒前
思维隋发布了新的文献求助10
13秒前
Dylan完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
第八维发布了新的文献求助10
15秒前
2534165发布了新的文献求助10
16秒前
harry2021完成签到,获得积分10
17秒前
科研通AI2S应助小蛇玩采纳,获得10
18秒前
20秒前
今后应助PDIF-CN2采纳,获得10
24秒前
24秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182