Reduced area of the normal lung on high-resolution computed tomography predicts poor survival in patients with lung cancer and combined pulmonary fibrosis and emphysema

医学 肺癌 高分辨率计算机断层扫描 肺纤维化 阶段(地层学) 恶化 放射科 比例危险模型 腺癌 内科学 特发性肺纤维化 胃肠病学 癌症 古生物学 生物
作者
Atsushi Miyamoto,Atsuko Kurosaki,Shuhei Moriguchi,Yui Takahashi,Kazumasa Ogawa,Kyoko Murase,Shigeo Hanada,Hironori Uruga,Hisashi Takaya,Nasa Morokawa,Takeshi Fujii,Junichi Hoshino,Kazuma Kishi
出处
期刊:Respiratory investigation [Elsevier]
卷期号:57 (2): 140-149 被引量:9
标识
DOI:10.1016/j.resinv.2018.10.007
摘要

This study aimed to determine the radiologic predictors and clarify the clinical features related to survival in patients with combined pulmonary fibrosis and emphysema (CPFE) and lung cancer. We retrospectively reviewed the medical chart data and high-resolution computed tomography (HRCT) findings for 81 consecutive patients with CPFE and 92 primary lung cancers (70 men, 11 women; mean age, 70.9 years). We selected 8 axial HRCT images per patient, and visually determined the normal lung, modified Goddard, and fibrosis scores. Multivariate analysis was performed using the Cox proportional hazards regression model. The major clinical features were a high smoking index of 54.8 pack-years and idiopathic pulmonary fibrosis (n = 44). The major lung cancer profile was a peripherally located squamous cell carcinoma (n = 40) or adenocarcinoma (n = 31) adjacent to emphysema in the upper/middle lobe (n = 27) or fibrosis in the lower lobe (n = 26). The median total normal lung, modified Goddard, and fibrosis scores were 10, 8, and 8, respectively. TNM Classification of malignant tumors (TNM) stage I, II, III, and IV was noted in 37, 7, 26, and 22 patients, respectively. Acute exacerbation occurred in 20 patients. Multivariate analysis showed that a higher normal lung score and TNM stage were independent radiologic and clinical predictors of poor survival at the time of diagnosis of lung cancer. A markedly reduced area of normal lung on HRCT was a relevant radiologic predictor of survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arnold发布了新的文献求助10
1秒前
在九月完成签到 ,获得积分10
1秒前
selfevidbet发布了新的文献求助30
1秒前
通~发布了新的文献求助10
1秒前
靓仔完成签到,获得积分10
1秒前
妙手回春板蓝根完成签到,获得积分10
1秒前
2秒前
11完成签到,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
777完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
4秒前
sun应助leave采纳,获得20
4秒前
4秒前
5秒前
5秒前
Loooong应助小房子采纳,获得10
6秒前
6秒前
云_123完成签到,获得积分10
7秒前
hf发布了新的文献求助10
7秒前
7秒前
赫连烙完成签到,获得积分10
7秒前
小二郎应助整齐小猫咪采纳,获得10
8秒前
领导范儿应助愤怒的源智采纳,获得10
8秒前
李来仪发布了新的文献求助10
8秒前
wisteety发布了新的文献求助10
8秒前
刘老师完成签到 ,获得积分10
8秒前
8秒前
8秒前
shulei发布了新的文献求助10
9秒前
糟糕的冷雪完成签到,获得积分10
9秒前
大模型应助杰森斯坦虎采纳,获得10
9秒前
典雅的如南完成签到 ,获得积分10
10秒前
小马甲应助无限的隶采纳,获得10
10秒前
饱满板栗完成签到 ,获得积分10
10秒前
Can完成签到,获得积分10
10秒前
10秒前
参上发布了新的文献求助10
11秒前
叫滚滚发布了新的文献求助10
11秒前
xiaowu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762