Reduced area of the normal lung on high-resolution computed tomography predicts poor survival in patients with lung cancer and combined pulmonary fibrosis and emphysema

医学 肺癌 高分辨率计算机断层扫描 肺纤维化 阶段(地层学) 恶化 放射科 比例危险模型 腺癌 内科学 特发性肺纤维化 胃肠病学 癌症 生物 古生物学
作者
Atsushi Miyamoto,Atsuko Kurosaki,Shuhei Moriguchi,Yui Takahashi,Kazumasa Ogawa,Kyoko Murase,Shigeo Hanada,Hironori Uruga,Hisashi Takaya,Nasa Morokawa,Takeshi Fujii,Junichi Hoshino,Kazuma Kishi
出处
期刊:Respiratory investigation [Elsevier]
卷期号:57 (2): 140-149 被引量:9
标识
DOI:10.1016/j.resinv.2018.10.007
摘要

This study aimed to determine the radiologic predictors and clarify the clinical features related to survival in patients with combined pulmonary fibrosis and emphysema (CPFE) and lung cancer. We retrospectively reviewed the medical chart data and high-resolution computed tomography (HRCT) findings for 81 consecutive patients with CPFE and 92 primary lung cancers (70 men, 11 women; mean age, 70.9 years). We selected 8 axial HRCT images per patient, and visually determined the normal lung, modified Goddard, and fibrosis scores. Multivariate analysis was performed using the Cox proportional hazards regression model. The major clinical features were a high smoking index of 54.8 pack-years and idiopathic pulmonary fibrosis (n = 44). The major lung cancer profile was a peripherally located squamous cell carcinoma (n = 40) or adenocarcinoma (n = 31) adjacent to emphysema in the upper/middle lobe (n = 27) or fibrosis in the lower lobe (n = 26). The median total normal lung, modified Goddard, and fibrosis scores were 10, 8, and 8, respectively. TNM Classification of malignant tumors (TNM) stage I, II, III, and IV was noted in 37, 7, 26, and 22 patients, respectively. Acute exacerbation occurred in 20 patients. Multivariate analysis showed that a higher normal lung score and TNM stage were independent radiologic and clinical predictors of poor survival at the time of diagnosis of lung cancer. A markedly reduced area of normal lung on HRCT was a relevant radiologic predictor of survival.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风风完成签到 ,获得积分10
1秒前
shidewu完成签到,获得积分10
1秒前
田様应助独角兽先生采纳,获得10
2秒前
2秒前
3秒前
Yultuz友发布了新的文献求助10
3秒前
HP完成签到,获得积分10
3秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
youyuanDeng完成签到,获得积分10
4秒前
李爱国应助Huguizhou采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
曈曦完成签到 ,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
6666应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
维奈克拉应助科研通管家采纳,获得10
4秒前
zzzz完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
LALALALA完成签到 ,获得积分10
5秒前
玄风应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
DaisyYao完成签到,获得积分20
5秒前
玄风应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
lilili应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
小豆应助科研通管家采纳,获得10
5秒前
七月流火应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367