超级电容器
材料科学
纳米片
电容
化学工程
聚苯胺
电极
功率密度
储能
兴奋剂
碳纤维
氢氧化物
纳米技术
复合数
光电子学
化学
复合材料
聚合
聚合物
量子力学
物理
工程类
物理化学
功率(物理)
作者
Junming Cao,Junzhi Li,La Li,Yu Zhang,Dong Cai,Duo Chen,Wei Han
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2019-05-22
卷期号:7 (12): 10699-10707
被引量:125
标识
DOI:10.1021/acssuschemeng.9b01343
摘要
The Mn doping effect (Mn2+ ⇋ Mn3+ ⇋ Mn4+) has been proven to be an efficient method to improve the specific capacitance and rate properties of the supercapacitor. Hence, in this article, we deposited Mn ions into Ni–Co-layered double hydroxide (MLDH) nanosheet-coated polyaniline (PANI)-derived carbon (PAC), which shows a 4-fold increase in specific capacity (from 310.02 to 1282.06 C/g). Furthermore, in order to widen the voltage window and increase the energy density, a flexible all-solid-state asymmetric supercapacitor is also fabricated by employing MLDH@PAC as a positive electrode and, respectively, nitrogen/oxygen self-doped PAC as a negative electrode. Noticeably, the assembled asymmetric devices with a wide voltage window of 1.6 V exhibit a high energy density of 78.9 Wh kg–1 at a power density of 1.55 kW kg–1, the long-term cyclic stability with 82.66% capacitance retention after 10 000 cycles, and reliable flexibility. Such excellent results will offer a feasible and effective Mn doping approach to prepare a hybrid electrode nanomaterial for energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI