亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis

纳米材料基催化剂 催化作用 电催化剂 铂金 材料科学 电化学 纳米技术 纳米线 过渡金属 化学工程 甲醇 纳米颗粒 化学 有机化学 物理化学 电极 工程类
作者
Mufan Li,Kaining Duanmu,Chengzhang Wan,Tao Cheng,Liang Zhang,Sheng Dai,Wenxing Chen,Zipeng Zhao,Peng Li,Huilong Fei,Yuanming Zhu,Rong Yu,Jun Luo,Ketao Zang,Zhaoyang Lin,Mengning Ding,Jin Huang,Hongtao Sun,Jinghua Guo,Xiaoqing Pan
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:2 (6): 495-503 被引量:630
标识
DOI:10.1038/s41929-019-0279-6
摘要

Platinum-based nanocatalysts play a crucial role in various electrocatalytic systems that are important for renewable, clean energy conversion, storage and utilization. However, the scarcity and high cost of Pt seriously limit the practical application of these catalysts. Decorating Pt catalysts with other transition metals offers an effective pathway to tailor their catalytic properties, but often at the sacrifice of the electrochemical active surface area (ECSA). Here we report a single-atom tailoring strategy to boost the activity of Pt nanocatalysts with minimal loss in surface active sites. By starting with PtNi alloy nanowires and using a partial electrochemical dealloying approach, we create single-nickel-atom-modified Pt nanowires with an optimum combination of specific activity and ECSA for the hydrogen evolution, methanol oxidation and ethanol oxidation reactions. The single-atom tailoring approach offers an effective strategy to optimize the activity of surface Pt atoms and enhance the mass activity for diverse reactions, opening a general pathway to the design of highly efficient and durable precious metal-based catalysts. Platinum plays a crucial role in various electrocatalytic systems, but its scarcity and cost limit its practical application. Now, a single-atom tailoring strategy applied to platinum nanowires maximizes their specific and mass activities for the hydrogen evolution and methanol and ethanol oxidation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
6秒前
7秒前
7秒前
叶子宁发布了新的文献求助10
8秒前
kdjc完成签到 ,获得积分10
9秒前
Hayward完成签到,获得积分10
9秒前
leaf完成签到 ,获得积分0
11秒前
秋念桃发布了新的文献求助10
12秒前
柔弱的纸鹤完成签到,获得积分10
14秒前
叶子宁完成签到,获得积分10
14秒前
南殊爱吃鱼粮完成签到 ,获得积分10
15秒前
le完成签到,获得积分10
19秒前
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
24秒前
李柏桐完成签到,获得积分20
28秒前
29秒前
30秒前
sasamuxi完成签到 ,获得积分10
31秒前
31秒前
33秒前
科研通AI6.1应助李柏桐采纳,获得10
34秒前
34秒前
羞涩的傲菡完成签到,获得积分10
35秒前
35秒前
xiaohu完成签到 ,获得积分10
36秒前
Omni完成签到,获得积分10
37秒前
lyyy完成签到,获得积分20
37秒前
封尘逸动完成签到,获得积分10
38秒前
41秒前
朱123完成签到,获得积分10
42秒前
包容煎饼发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731434
求助须知:如何正确求助?哪些是违规求助? 5330471
关于积分的说明 15320989
捐赠科研通 4877485
什么是DOI,文献DOI怎么找? 2620351
邀请新用户注册赠送积分活动 1569604
关于科研通互助平台的介绍 1526113