亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Path Planning via an Improved DQN-Based Learning Policy

路径(计算) 人工神经网络 机器学习 机器人
作者
Liangheng Lv,Sunjie Zhang,Derui Ding,Yongxiong Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 67319-67330 被引量:22
标识
DOI:10.1109/access.2019.2918703
摘要

The path planning technology is an important part of navigation, which is the core of robotics research. Reinforcement learning is a fashionable algorithm that learns from experience by mimicking the process of human learning skills. When learning new skills, the comprehensive and diverse experience help to refine the grasp of new skills which are called as the depth and the breadth of experience. According to the path planning, this paper proposes an improved learning policy based on the different demand of the experience's depth and breadth in different learning stages, where the deep Q-networks calculated Q-value adopts the dense network framework. In the initial stage of learning, an experience value evaluation network is created to increase the proportion of deep experience to understand the environmental rules more quickly. When the path wandering phenomenon happens, the exploration of wandering point and other points are taken into account to improve the breadth of the experience pool by using parallel exploration structure. In addition, the network structure is improved by referring to the dense connection method, so the learning and expressive abilities of the network are improved to some extent. Finally, the experimental results show that our model has a certain improvement in convergence speed, planning success rate, and path accuracy. Under the same experimental conditions, the method of this paper is compared with the conventional intensive learning method via deep Q-networks. The results show that the indicators of this method are significantly higher.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nihao完成签到,获得积分10
3秒前
Eileen完成签到 ,获得积分0
4秒前
缪忆寒完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
迷路不愁完成签到 ,获得积分10
9秒前
wang完成签到 ,获得积分10
15秒前
18秒前
24秒前
31秒前
ding应助沉静的万天采纳,获得10
34秒前
34秒前
35秒前
zrrr完成签到 ,获得积分10
35秒前
35秒前
科研通AI6.1应助Crw__采纳,获得10
42秒前
simon完成签到 ,获得积分10
46秒前
流川封完成签到,获得积分10
47秒前
烂漫靖柏完成签到 ,获得积分10
51秒前
52秒前
雪霁完成签到,获得积分10
53秒前
Crw__发布了新的文献求助10
1分钟前
汪酱酱完成签到 ,获得积分10
1分钟前
星辰大海应助坚强的唇膏采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
风信子完成签到 ,获得积分10
1分钟前
啵啵鱼发布了新的文献求助10
1分钟前
qunna完成签到,获得积分10
1分钟前
1分钟前
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
三点前我必睡完成签到 ,获得积分10
1分钟前
Rui发布了新的文献求助10
1分钟前
1分钟前
Akim应助等待的香魔采纳,获得30
1分钟前
啵啵鱼完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301