Path Planning via an Improved DQN-Based Learning Policy

路径(计算) 人工神经网络 机器学习 机器人
作者
Liangheng Lv,Sunjie Zhang,Derui Ding,Yongxiong Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 67319-67330 被引量:22
标识
DOI:10.1109/access.2019.2918703
摘要

The path planning technology is an important part of navigation, which is the core of robotics research. Reinforcement learning is a fashionable algorithm that learns from experience by mimicking the process of human learning skills. When learning new skills, the comprehensive and diverse experience help to refine the grasp of new skills which are called as the depth and the breadth of experience. According to the path planning, this paper proposes an improved learning policy based on the different demand of the experience's depth and breadth in different learning stages, where the deep Q-networks calculated Q-value adopts the dense network framework. In the initial stage of learning, an experience value evaluation network is created to increase the proportion of deep experience to understand the environmental rules more quickly. When the path wandering phenomenon happens, the exploration of wandering point and other points are taken into account to improve the breadth of the experience pool by using parallel exploration structure. In addition, the network structure is improved by referring to the dense connection method, so the learning and expressive abilities of the network are improved to some extent. Finally, the experimental results show that our model has a certain improvement in convergence speed, planning success rate, and path accuracy. Under the same experimental conditions, the method of this paper is compared with the conventional intensive learning method via deep Q-networks. The results show that the indicators of this method are significantly higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
忧郁的听露完成签到,获得积分10
1秒前
归尘发布了新的文献求助30
1秒前
XCF应助feng1235采纳,获得20
1秒前
脑洞疼应助白桦林泪采纳,获得10
2秒前
3秒前
心灵尔安完成签到 ,获得积分10
3秒前
王桑完成签到 ,获得积分10
3秒前
4秒前
共享精神应助七十二采纳,获得10
4秒前
Listen发布了新的文献求助10
5秒前
5秒前
李霞客完成签到,获得积分10
5秒前
虚心海燕完成签到,获得积分10
6秒前
7秒前
chenxiangyu发布了新的文献求助10
7秒前
8秒前
Rondab应助hhcai采纳,获得10
8秒前
thth发布了新的文献求助10
9秒前
wuniuniu发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
hhh完成签到 ,获得积分10
13秒前
闪闪如松发布了新的文献求助10
14秒前
14秒前
鱼与木头发布了新的文献求助10
14秒前
努力发布了新的文献求助10
14秒前
桐桐应助言草西采纳,获得10
15秒前
领导范儿应助wuniuniu采纳,获得10
16秒前
CyndiaSUN完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
明理的若菱关注了科研通微信公众号
22秒前
23秒前
小苏苏完成签到,获得积分20
23秒前
LuoYixiang发布了新的文献求助10
24秒前
鱼与木头完成签到,获得积分10
24秒前
李健的小迷弟应助lzx采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176