Path Planning via an Improved DQN-Based Learning Policy

路径(计算) 人工神经网络 机器学习 机器人
作者
Liangheng Lv,Sunjie Zhang,Derui Ding,Yongxiong Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 67319-67330 被引量:22
标识
DOI:10.1109/access.2019.2918703
摘要

The path planning technology is an important part of navigation, which is the core of robotics research. Reinforcement learning is a fashionable algorithm that learns from experience by mimicking the process of human learning skills. When learning new skills, the comprehensive and diverse experience help to refine the grasp of new skills which are called as the depth and the breadth of experience. According to the path planning, this paper proposes an improved learning policy based on the different demand of the experience's depth and breadth in different learning stages, where the deep Q-networks calculated Q-value adopts the dense network framework. In the initial stage of learning, an experience value evaluation network is created to increase the proportion of deep experience to understand the environmental rules more quickly. When the path wandering phenomenon happens, the exploration of wandering point and other points are taken into account to improve the breadth of the experience pool by using parallel exploration structure. In addition, the network structure is improved by referring to the dense connection method, so the learning and expressive abilities of the network are improved to some extent. Finally, the experimental results show that our model has a certain improvement in convergence speed, planning success rate, and path accuracy. Under the same experimental conditions, the method of this paper is compared with the conventional intensive learning method via deep Q-networks. The results show that the indicators of this method are significantly higher.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
皮皮发布了新的文献求助10
1秒前
1秒前
misa发布了新的文献求助10
2秒前
wzc完成签到,获得积分10
3秒前
ZZHh完成签到,获得积分20
3秒前
fbl完成签到,获得积分10
4秒前
4秒前
JamesPei应助悬铃木采纳,获得10
4秒前
Ava应助务实的羞花采纳,获得10
5秒前
oxear发布了新的文献求助10
5秒前
迷茫在天空的云完成签到,获得积分20
5秒前
5秒前
6秒前
Viki完成签到,获得积分10
6秒前
ding应助dn采纳,获得10
6秒前
芋头完成签到,获得积分10
6秒前
6秒前
搜集达人应助nni采纳,获得10
6秒前
ZZHh发布了新的文献求助10
6秒前
7秒前
lesliechan完成签到,获得积分10
7秒前
田様应助风趣的易真采纳,获得10
7秒前
8秒前
科目三应助地瓜采纳,获得10
8秒前
shiny完成签到 ,获得积分10
9秒前
10秒前
serendipity发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
cc发布了新的文献求助10
12秒前
zho应助Y_Jfeng采纳,获得10
14秒前
开朗雨莲完成签到,获得积分10
14秒前
研友_VZG7GZ应助地瓜采纳,获得10
15秒前
易夜雨居发布了新的文献求助10
15秒前
义气的青枫完成签到 ,获得积分10
15秒前
邱志鸿发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589181
求助须知:如何正确求助?哪些是违规求助? 4673512
关于积分的说明 14790948
捐赠科研通 4627714
什么是DOI,文献DOI怎么找? 2532132
邀请新用户注册赠送积分活动 1500793
关于科研通互助平台的介绍 1468403