Path Planning via an Improved DQN-Based Learning Policy

路径(计算) 人工神经网络 机器学习 机器人
作者
Liangheng Lv,Sunjie Zhang,Derui Ding,Yongxiong Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 67319-67330 被引量:22
标识
DOI:10.1109/access.2019.2918703
摘要

The path planning technology is an important part of navigation, which is the core of robotics research. Reinforcement learning is a fashionable algorithm that learns from experience by mimicking the process of human learning skills. When learning new skills, the comprehensive and diverse experience help to refine the grasp of new skills which are called as the depth and the breadth of experience. According to the path planning, this paper proposes an improved learning policy based on the different demand of the experience's depth and breadth in different learning stages, where the deep Q-networks calculated Q-value adopts the dense network framework. In the initial stage of learning, an experience value evaluation network is created to increase the proportion of deep experience to understand the environmental rules more quickly. When the path wandering phenomenon happens, the exploration of wandering point and other points are taken into account to improve the breadth of the experience pool by using parallel exploration structure. In addition, the network structure is improved by referring to the dense connection method, so the learning and expressive abilities of the network are improved to some extent. Finally, the experimental results show that our model has a certain improvement in convergence speed, planning success rate, and path accuracy. Under the same experimental conditions, the method of this paper is compared with the conventional intensive learning method via deep Q-networks. The results show that the indicators of this method are significantly higher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
knn发布了新的文献求助10
2秒前
6秒前
gdh发布了新的文献求助10
6秒前
9秒前
9秒前
11秒前
义气的钥匙完成签到,获得积分10
11秒前
11秒前
孟祥勤完成签到,获得积分10
11秒前
11秒前
难过的安双完成签到,获得积分10
12秒前
12秒前
初昀杭发布了新的文献求助10
12秒前
许可发布了新的文献求助10
14秒前
萝卜发布了新的文献求助10
15秒前
科研通AI2S应助长度2到采纳,获得10
15秒前
母广明完成签到 ,获得积分10
16秒前
18秒前
lingting完成签到 ,获得积分10
21秒前
22秒前
萝卜完成签到,获得积分10
22秒前
23秒前
1271470003发布了新的文献求助10
23秒前
25秒前
XuXIkai发布了新的文献求助10
27秒前
27秒前
风巽雷震之歌完成签到,获得积分10
28秒前
32秒前
zzq发布了新的文献求助10
32秒前
鱼鱼鱼完成签到 ,获得积分10
33秒前
正直三颜完成签到,获得积分10
34秒前
丸子发布了新的文献求助30
34秒前
XuXIkai完成签到,获得积分10
36秒前
哇卡哇卡完成签到,获得积分10
37秒前
勤奋凡双完成签到 ,获得积分10
37秒前
烟花应助锦鲤嘟嘟嘟采纳,获得10
37秒前
38秒前
38秒前
wangayting完成签到,获得积分10
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043