In this study, Fe-doped Bi2O2CO3 nanoplates were fabricated using a facile solvothermal approach. The successful substitution of Bi3+ by Fe3+ was identified by a shift in the (010) diffraction peak of Bi2O2CO3 at 2θ = 30.2°. A controllable amount of Fe doping in Bi2O2CO3 was utilized to gradually tailor the band gap energy from 3.39 eV to 2.68 eV, resulting in the absorption edge switched from ultraviolet light to visible-light region. Compared to the pure Bi2O2CO3, Fe-doped Bi2O2CO3 nanoplates exhibited an enhanced visible-light photocatalytic activity. With the gradual increase of Fe dopant amount, the photocatlytic activity of Fe-doped Bi2O2CO3 increased initially, and then slightly decreased. Further reactive species trapping experiments demonstrated that holes (h+) and superoxide anion radicals (O2−) played important roles in the photocatalytic oxidation.