Mathematical Integration for Solving Biological Growth in Fish Lake Problem Using Gompertz Approach

Gompertz函数 功能(生物学) 应用数学 数学 数学优化 增长曲线(统计) 计算机科学 统计 生物 进化生物学
作者
Samuel Olukayode Ayinde
出处
期刊:Biomedical statistics and informatics [Science Publishing Group]
卷期号:3 (3): 43-43 被引量:2
标识
DOI:10.11648/j.bsi.20180303.11
摘要

A lake is classified as a body of relatively still water that is almost completely surrounded by land with a river or stream that feeds into it or drains from it. A lake that has fish that you can catch can either be man-made or natural, with natural lakes tending to have more successful results. In this research, an interpolating function was proposed following Gompertz function approach considering the scale and shape parameters, a Numerical Method was developed and applied to solve the biological fish lake stocking and growth problem which gives effective results as when Gompertz equation was used directly. Numerical method is an effective tool to solve the problem of growth as its applicable in Gompertz equation. The method results obtained found to be favourable when the Numerical Solution and Analytical Solution is compared as the error obtained is minimal showing the effectiveness of the Method. Gompertz Function or equation was for long of interest only to actuaries and demographics. Its however, recently been used by various authors as a growth curve or function both for biological, economics and Management phenomena. Therefore, we have been able to show how the numerical integration obtained from the interpolating function work the same way Gompertz function worked.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Smiling发布了新的文献求助20
1秒前
TTK完成签到,获得积分10
2秒前
2秒前
2秒前
典雅雅容完成签到,获得积分10
2秒前
酷酷煎饼完成签到,获得积分10
2秒前
wanci应助sota采纳,获得10
3秒前
4秒前
wy发布了新的文献求助10
4秒前
乾雨发布了新的文献求助10
5秒前
5秒前
莱雅lyre完成签到,获得积分10
5秒前
科研通AI2S应助Nini1203采纳,获得10
5秒前
lxl1996完成签到,获得积分10
5秒前
6秒前
Lucas应助猕猴桃汁er采纳,获得10
6秒前
世事如书发布了新的文献求助10
7秒前
豆子完成签到,获得积分10
7秒前
研友_Z1eDgZ发布了新的文献求助10
7秒前
冰咖啡完成签到,获得积分10
7秒前
斯文败类应助yaohan1121采纳,获得10
7秒前
xxxx完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助你不知道采纳,获得10
7秒前
fsf完成签到,获得积分10
8秒前
pengpeng发布了新的文献求助10
8秒前
陈老太完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助耶耶采纳,获得10
8秒前
9秒前
10秒前
彭于晏应助柚子采纳,获得10
10秒前
11秒前
lucky发布了新的文献求助10
11秒前
高震博完成签到 ,获得积分10
11秒前
11秒前
树袋熊发布了新的文献求助10
11秒前
小油菜完成签到 ,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567