Predicting the non-survival outcome of large hemispheric infarction patients via quantitative electroencephalography: Superiority to visual electroencephalography and the Glasgow Coma Scale

脑电图 定量脑电图 格拉斯哥昏迷指数 医学 听力学 心理学 麻醉 精神科
作者
Mengdi Jiang,Yingying Su,Gang Liu,Weibi Chen,Daiquan Gao
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:706: 88-92 被引量:16
标识
DOI:10.1016/j.neulet.2019.05.007
摘要

Quantitative electroencephalography (QEEG) data are useful to predict outcomes of cerebral infarction patients. This study was performed to establish the value of QEEG in the prediction of outcomes in patients with large hemispheric infarction (LHI). A prognostic blinded cohort study was conducted on patients diagnosed with LHI in our neurocritical care unit. The electroencephalography (EEG) was recorded at the bedside within 3 days of LHI onset. Each EEG expert scored the raw EEG, and QEEG parameters including the absolute power, (delta + theta)/ (alpha + beta) ratio and brain symmetry index were obtained afterwards. Baseline data including Glasgow Coma Scale (GCS) was recorded at the meantime. Outcomes included survival or non-survival at the time of discharge and 6 months after the onset of LHI. A total of 50 patients entered into the final analysis. There were no differences in baseline data or visual EEG grades between survival and non-survival groups. QEEG analysis showed that the absolute theta power of all of the electrodes and the contralateral electrodes was significantly higher in the non-survival group than in the survival group at discharge. Multivariable logistic regression analysis demonstrated that theta power of the contralateral electrodes was an independent predictor of death at discharge and at 6 months. Compared to the GCS and EEG grading, the QEEG index exhibited higher accuracy in predicting non-survival outcomes. Among QEEG indices, theta power is valuable in predicting non-survival outcome in participants and is superior to visual EEG and GCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助kento采纳,获得10
1秒前
天天快乐应助若离采纳,获得10
2秒前
3秒前
4秒前
4秒前
ucas大菠萝发布了新的文献求助10
4秒前
Ava应助呆萌剑通采纳,获得10
5秒前
嘿嘿应助淡淡翠曼采纳,获得10
6秒前
6秒前
dabao发布了新的文献求助10
7秒前
傲娇以寒完成签到 ,获得积分10
8秒前
8秒前
8秒前
LL完成签到,获得积分10
9秒前
开心的涵柳完成签到,获得积分10
9秒前
10秒前
小楠楠发布了新的文献求助10
10秒前
11秒前
好好发布了新的文献求助12
11秒前
11秒前
事上炼应助冰淇淋啦啦啦采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
852应助摸鱼宝采纳,获得10
12秒前
13秒前
丘比特应助刘子田采纳,获得10
13秒前
情怀应助刘子田采纳,获得10
13秒前
李新悦发布了新的文献求助10
14秒前
15秒前
若离发布了新的文献求助10
17秒前
17秒前
淡淡一凤发布了新的文献求助10
17秒前
科研通AI6应助dabao采纳,获得10
18秒前
不是阿花发布了新的文献求助10
18秒前
szy关注了科研通微信公众号
18秒前
大个应助日天化石采纳,获得10
18秒前
梦梦完成签到,获得积分10
19秒前
引子完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594