Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning

自编码 人工智能 模式识别(心理学) 深度学习 特征提取 计算机科学 方位(导航) 深信不疑网络 代表(政治) 特征(语言学) 特征学习 支持向量机 机器学习 工程类 语言学 哲学 政治 政治学 法学
作者
Wentao Mao,Jianliang He,Ming J. Zuo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1594-1608 被引量:258
标识
DOI:10.1109/tim.2019.2917735
摘要

For the data-driven remaining useful life (RUL) prediction for rolling bearings, the traditional machine learning-based methods generally provide insufficient feature representation and adaptive extraction. Although deep learning-based RUL prediction methods can solve these problems to some extent, they still do not yield satisfactory predictive results due to less degradation data and inconsistent data distribution among different bearings. To solve these problems, a new RUL prediction method based on deep feature representation and transfer learning is proposed in this paper. This method includes an off-line stage and an online stage. In the off-line stage, the Hilbert-Huang transform marginal spectra of the raw vibration signal of auxiliary bearings are first calculated as the input, and then contractive denoising autoencoder is introduced to extract deep features with good and stable fault representation. Second, by using the obtained deep features and Pearson's correlation coefficient, a new health condition assessment method is proposed to divide the whole life of each bearing into a normal state and a fast-degradation state. Finally, using the extracted deep features and their RUL values, an RUL prediction model for the fast-degradation state is trained by means of a least-square support vector machine. In the online stage, a kind of transfer learning algorithm, i.e., transfer component analysis, is introduced to sequentially adjust the features of target bearing from auxiliary bearings, and then the corresponding RUL is predicted using the corrected features. Results using the PHM Challenging 2012 data set show a significant performance improvement when using the proposed method in terms of predictive accuracy and numerical stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
¥#¥-11完成签到,获得积分10
1秒前
认真若云发布了新的文献求助10
2秒前
2秒前
sophieCCM0302发布了新的文献求助10
2秒前
3秒前
3秒前
7777777发布了新的文献求助10
4秒前
小泉发布了新的文献求助10
5秒前
YOOO发布了新的文献求助10
6秒前
眼睛大含双完成签到 ,获得积分10
7秒前
8秒前
chenjingjing发布了新的文献求助10
8秒前
10秒前
今年发论文完成签到,获得积分10
10秒前
10秒前
江夏完成签到 ,获得积分10
11秒前
枭声应助安静的月亮采纳,获得10
12秒前
14秒前
闾丘剑封发布了新的文献求助10
14秒前
YOOO完成签到,获得积分10
14秒前
15秒前
领导范儿应助7777777采纳,获得10
15秒前
17秒前
18秒前
18秒前
WCM完成签到,获得积分10
18秒前
chen完成签到,获得积分10
19秒前
一一完成签到 ,获得积分10
19秒前
oneday发布了新的文献求助50
19秒前
量子星尘发布了新的文献求助10
20秒前
明天见完成签到,获得积分10
21秒前
Ukey发布了新的文献求助10
23秒前
23秒前
北执完成签到,获得积分10
24秒前
24秒前
恐怖稽器人完成签到,获得积分10
24秒前
25秒前
25秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734932
求助须知:如何正确求助?哪些是违规求助? 5357333
关于积分的说明 15328116
捐赠科研通 4879418
什么是DOI,文献DOI怎么找? 2621901
邀请新用户注册赠送积分活动 1571096
关于科研通互助平台的介绍 1527906