Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning

自编码 人工智能 模式识别(心理学) 深度学习 特征提取 计算机科学 方位(导航) 深信不疑网络 代表(政治) 特征(语言学) 特征学习 支持向量机 机器学习 工程类 语言学 哲学 政治 政治学 法学
作者
Wentao Mao,Jianliang He,Ming J. Zuo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1594-1608 被引量:258
标识
DOI:10.1109/tim.2019.2917735
摘要

For the data-driven remaining useful life (RUL) prediction for rolling bearings, the traditional machine learning-based methods generally provide insufficient feature representation and adaptive extraction. Although deep learning-based RUL prediction methods can solve these problems to some extent, they still do not yield satisfactory predictive results due to less degradation data and inconsistent data distribution among different bearings. To solve these problems, a new RUL prediction method based on deep feature representation and transfer learning is proposed in this paper. This method includes an off-line stage and an online stage. In the off-line stage, the Hilbert-Huang transform marginal spectra of the raw vibration signal of auxiliary bearings are first calculated as the input, and then contractive denoising autoencoder is introduced to extract deep features with good and stable fault representation. Second, by using the obtained deep features and Pearson's correlation coefficient, a new health condition assessment method is proposed to divide the whole life of each bearing into a normal state and a fast-degradation state. Finally, using the extracted deep features and their RUL values, an RUL prediction model for the fast-degradation state is trained by means of a least-square support vector machine. In the online stage, a kind of transfer learning algorithm, i.e., transfer component analysis, is introduced to sequentially adjust the features of target bearing from auxiliary bearings, and then the corresponding RUL is predicted using the corrected features. Results using the PHM Challenging 2012 data set show a significant performance improvement when using the proposed method in terms of predictive accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊娴仔完成签到,获得积分10
1秒前
1秒前
1秒前
韭菜发布了新的文献求助10
1秒前
Harlotte发布了新的文献求助20
2秒前
思源应助系统提示采纳,获得10
2秒前
蜡笔发布了新的文献求助30
2秒前
宋嬴一发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
HYLynn应助hetao286采纳,获得10
4秒前
6秒前
6秒前
夯大力发布了新的文献求助10
6秒前
6秒前
7秒前
自觉沛芹完成签到,获得积分10
7秒前
YukiXu完成签到 ,获得积分10
7秒前
7秒前
桐桐应助SXM采纳,获得10
8秒前
波特卡斯D艾斯完成签到 ,获得积分10
9秒前
852应助排骨炖豆角采纳,获得10
10秒前
10秒前
顾矜应助木子采纳,获得10
10秒前
feng发布了新的文献求助10
10秒前
成就的小熊猫完成签到,获得积分10
11秒前
11秒前
Morgenstern_ZH完成签到,获得积分10
12秒前
hua发布了新的文献求助10
12秒前
_Forelsket_完成签到,获得积分10
12秒前
12秒前
半颗橙子完成签到 ,获得积分10
14秒前
科研通AI5应助zmy采纳,获得10
14秒前
善学以致用应助enoot采纳,获得10
15秒前
JamesPei应助失眠的血茗采纳,获得10
15秒前
青山发布了新的文献求助10
15秒前
亻鱼发布了新的文献求助10
16秒前
脑洞疼应助成就的小熊猫采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740