Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning

自编码 人工智能 模式识别(心理学) 深度学习 特征提取 计算机科学 方位(导航) 深信不疑网络 代表(政治) 特征(语言学) 特征学习 支持向量机 机器学习 工程类 语言学 哲学 政治 政治学 法学
作者
Wentao Mao,Jianliang He,Ming J. Zuo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1594-1608 被引量:258
标识
DOI:10.1109/tim.2019.2917735
摘要

For the data-driven remaining useful life (RUL) prediction for rolling bearings, the traditional machine learning-based methods generally provide insufficient feature representation and adaptive extraction. Although deep learning-based RUL prediction methods can solve these problems to some extent, they still do not yield satisfactory predictive results due to less degradation data and inconsistent data distribution among different bearings. To solve these problems, a new RUL prediction method based on deep feature representation and transfer learning is proposed in this paper. This method includes an off-line stage and an online stage. In the off-line stage, the Hilbert-Huang transform marginal spectra of the raw vibration signal of auxiliary bearings are first calculated as the input, and then contractive denoising autoencoder is introduced to extract deep features with good and stable fault representation. Second, by using the obtained deep features and Pearson's correlation coefficient, a new health condition assessment method is proposed to divide the whole life of each bearing into a normal state and a fast-degradation state. Finally, using the extracted deep features and their RUL values, an RUL prediction model for the fast-degradation state is trained by means of a least-square support vector machine. In the online stage, a kind of transfer learning algorithm, i.e., transfer component analysis, is introduced to sequentially adjust the features of target bearing from auxiliary bearings, and then the corresponding RUL is predicted using the corrected features. Results using the PHM Challenging 2012 data set show a significant performance improvement when using the proposed method in terms of predictive accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OE完成签到,获得积分10
刚刚
heizbimawan发布了新的文献求助10
刚刚
yaya发布了新的文献求助10
1秒前
1秒前
在水一方应助花花采纳,获得10
1秒前
1秒前
正爱霜发布了新的文献求助10
2秒前
今后应助唐糖采纳,获得10
2秒前
小虎完成签到,获得积分10
3秒前
从容芸完成签到,获得积分10
3秒前
3秒前
达布溜完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Hello应助徐佳乐采纳,获得10
4秒前
5秒前
小二郎应助安小安采纳,获得10
5秒前
princecoof发布了新的文献求助10
5秒前
8R60d8应助candyTT采纳,获得10
5秒前
CL完成签到,获得积分10
5秒前
5秒前
6秒前
fff发布了新的文献求助30
7秒前
魔幻冰棍发布了新的文献求助10
7秒前
7秒前
666eeerrr完成签到 ,获得积分10
7秒前
FashionBoy应助yaya采纳,获得10
8秒前
九闫祝发布了新的文献求助10
8秒前
Ly完成签到,获得积分10
8秒前
quhayley发布了新的文献求助10
8秒前
毕业大吉发布了新的文献求助20
8秒前
hll发布了新的文献求助10
8秒前
Hello应助RC_Wang采纳,获得10
9秒前
丘比特应助rlh采纳,获得10
9秒前
时尚的靖发布了新的文献求助10
10秒前
10秒前
兔子发布了新的文献求助10
10秒前
weizhao发布了新的文献求助10
10秒前
Lucas应助农瑞金采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454