Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning

自编码 人工智能 模式识别(心理学) 深度学习 特征提取 计算机科学 方位(导航) 深信不疑网络 代表(政治) 特征(语言学) 特征学习 支持向量机 机器学习 工程类 哲学 政治 法学 语言学 政治学
作者
Wentao Mao,Jianliang He,Ming J. Zuo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1594-1608 被引量:258
标识
DOI:10.1109/tim.2019.2917735
摘要

For the data-driven remaining useful life (RUL) prediction for rolling bearings, the traditional machine learning-based methods generally provide insufficient feature representation and adaptive extraction. Although deep learning-based RUL prediction methods can solve these problems to some extent, they still do not yield satisfactory predictive results due to less degradation data and inconsistent data distribution among different bearings. To solve these problems, a new RUL prediction method based on deep feature representation and transfer learning is proposed in this paper. This method includes an off-line stage and an online stage. In the off-line stage, the Hilbert-Huang transform marginal spectra of the raw vibration signal of auxiliary bearings are first calculated as the input, and then contractive denoising autoencoder is introduced to extract deep features with good and stable fault representation. Second, by using the obtained deep features and Pearson's correlation coefficient, a new health condition assessment method is proposed to divide the whole life of each bearing into a normal state and a fast-degradation state. Finally, using the extracted deep features and their RUL values, an RUL prediction model for the fast-degradation state is trained by means of a least-square support vector machine. In the online stage, a kind of transfer learning algorithm, i.e., transfer component analysis, is introduced to sequentially adjust the features of target bearing from auxiliary bearings, and then the corresponding RUL is predicted using the corrected features. Results using the PHM Challenging 2012 data set show a significant performance improvement when using the proposed method in terms of predictive accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢天菱发布了新的文献求助10
刚刚
1秒前
156发布了新的文献求助10
1秒前
斯文败类应助内向新之采纳,获得10
1秒前
wenlon完成签到,获得积分10
1秒前
执着千柔应助whi采纳,获得10
2秒前
3秒前
ng完成签到,获得积分10
3秒前
3秒前
汉堡包应助西红柿采纳,获得10
3秒前
3秒前
Crystalchi发布了新的文献求助10
3秒前
香蕉觅云应助勤恳易谙采纳,获得10
5秒前
5秒前
fwx1997发布了新的文献求助10
6秒前
6秒前
6秒前
zf完成签到,获得积分10
7秒前
7秒前
cristin完成签到,获得积分10
7秒前
赵寇完成签到,获得积分10
8秒前
杨小勺儿发布了新的文献求助10
8秒前
玩命的朋友发布了新的文献求助100
8秒前
8秒前
燕儿发布了新的文献求助10
8秒前
8秒前
Novak关注了科研通微信公众号
9秒前
啥子那完成签到,获得积分10
9秒前
9秒前
李健应助柠檬味电子对儿采纳,获得10
10秒前
wayhome发布了新的文献求助10
10秒前
xiaxiao完成签到,获得积分0
10秒前
chen发布了新的文献求助10
10秒前
Elaine发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
luoyulin完成签到,获得积分10
13秒前
asstman发布了新的文献求助10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221573
求助须知:如何正确求助?哪些是违规求助? 2870316
关于积分的说明 8170125
捐赠科研通 2537179
什么是DOI,文献DOI怎么找? 1369351
科研通“疑难数据库(出版商)”最低求助积分说明 645466
邀请新用户注册赠送积分活动 619101