亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility

医学 接收机工作特性 甲状腺结节 人工智能 放射科 回声 危险分层 活检 双雷达 机器学习 甲状腺 核医学 超声科 计算机科学 内科学 癌症 乳腺癌 乳腺摄影术
作者
Benjamin Wildman‐Tobriner,Mateusz Buda,Jenny K. Hoang,William D. Middleton,David Thayer,Ryan G. Short,Franklin N. Tessler,Maciej A. Mazurowski
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (1): 112-119 被引量:118
标识
DOI:10.1148/radiol.2019182128
摘要

Background Risk stratification systems for thyroid nodules are often complicated and affected by low specificity. Continual improvement of these systems is necessary to reduce the number of unnecessary thyroid biopsies. Purpose To use artificial intelligence (AI) to optimize the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Materials and Methods A total of 1425 biopsy-proven thyroid nodules from 1264 consecutive patients (1026 women; mean age, 52.9 years [range, 18–93 years]) were evaluated retrospectively. Expert readers assigned points based on five ACR TI-RADS categories (composition, echogenicity, shape, margin, echogenic foci), and a genetic AI algorithm was applied to a training set (1325 nodules). Point and pathologic data were used to create an optimized scoring system (hereafter, AI TI-RADS). Performance of the systems was compared by using a test set of the final 100 nodules with interpretations from the expert reader, eight nonexpert readers, and an expert panel. Initial performance of AI TI-RADS was calculated by using a test for differences between binomial proportions. Additional comparisons across readers were conducted by using bootstrapping; diagnostic performance was assessed by using area under the receiver operating curve. Results AI TI-RADS assigned new point values for eight ACR TI-RADS features. Six features were assigned zero points, which simplified categorization. By using expert reader data, the diagnostic performance of ACR TI-RADS and AI TI-RADS was area under the receiver operating curve of 0.91 and 0.93, respectively. For the same expert, specificity of AI TI-RADS (65%, 55 of 85) was higher (P < .001) than that of ACR TI-RADS (47%, 40 of 85). For the eight nonexpert radiologists, mean specificity for AI TI-RADS (55%) was also higher (P < .001) than that of ACR TI-RADS (48%). An interactive AI TI-RADS calculator can be viewed at http://deckard.duhs.duke.edu/∼ai-ti-rads. Conclusion An artificial intelligence–optimized Thyroid Imaging Reporting and Data System (TI-RADS) validates the American College of Radiology TI-RADS while slightly improving specificity and maintaining sensitivity. Additionally, it simplifies feature assignments, which may improve ease of use. © RSNA, 2019 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stayreal关注了科研通微信公众号
6秒前
14秒前
stayreal发布了新的文献求助10
19秒前
51秒前
NexusExplorer应助科研通管家采纳,获得10
54秒前
noss发布了新的文献求助10
56秒前
111完成签到 ,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
机智的白猫完成签到 ,获得积分10
1分钟前
林非鹿完成签到,获得积分10
1分钟前
田様应助George采纳,获得10
1分钟前
lhjct0313完成签到 ,获得积分10
1分钟前
2分钟前
George发布了新的文献求助10
2分钟前
2分钟前
临风完成签到,获得积分20
2分钟前
临风发布了新的文献求助10
3分钟前
celinewu完成签到,获得积分10
3分钟前
3分钟前
huge完成签到,获得积分10
4分钟前
Hello应助xuan采纳,获得10
4分钟前
4分钟前
xuan发布了新的文献求助10
4分钟前
4分钟前
深情安青应助科研通管家采纳,获得30
4分钟前
lyp完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
anitachiu1104发布了新的文献求助10
6分钟前
打打应助科研通管家采纳,获得10
6分钟前
wolfen发布了新的文献求助40
8分钟前
8分钟前
8分钟前
9分钟前
手术刀完成签到 ,获得积分10
9分钟前
无与伦比完成签到 ,获得积分10
9分钟前
woxinyouyou完成签到,获得积分0
9分钟前
zhiwei完成签到 ,获得积分0
9分钟前
加菲丰丰完成签到,获得积分0
9分钟前
wolfen完成签到,获得积分20
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770478
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176448
捐赠科研通 3030505
什么是DOI,文献DOI怎么找? 1662945
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756704