What attributes of interventions for osteoarthritis drive preferences? A discrete choice experiment involving cross-sectoral and multi-disciplinary stakeholder groups

跨学科 心理干预 利益相关者 纪律 心理学 计算机科学 经济 数据科学 政治学 管理 精神科 法学
作者
Jason Chua,Paul Hansen,Andrew M. Briggs,J. Haxby Abbott
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:27: S302-S302
标识
DOI:10.1016/j.joca.2019.02.698
摘要

Purpose: Evidence-based interventions for managing osteoarthritis (OA) are under-utilised - leading to a missed opportunity for reducing disease burden. Delivery of OA interventions is influenced by choices made by stakeholders such as consumers, providers and policy-makers of OA health care. When stakeholders choose OA interventions, what attributes of the interventions are most important to them? Understanding stakeholders’ preferences in this respect could help unravel the evidence-practice gap and suggest strategies to address it. This study sought to discover the relative importance of the attributes of OA interventions and to evaluate whether stakeholders’ preferences can be explained by their sociodemographic characteristics. Methods: Between November 2017 and July 2018, a convenience sample of OA health care consumers, providers, policy-makers and other OA experts completed an online discrete choice experiment (DCE) based on the PAPRIKA method - an acronym for Potentially All Pairwise RanKings of all possible Alternatives - implemented using 1000minds software. The DCE revealed stakeholders’ weights representing the relative importance to them of eight attributes characterising OA interventions identified in an earlier study of ours: accessibility (Acc), cost of the intervention (Cos), duration of the intervention effect (Dur), effectiveness (Eff), quality of evidence about the intervention (Qua), recommendation for using the intervention (Rec), risk of mild or moderate effects (RMi) and risk of serious harm (RSe). Each attribute comprised 2-4 levels, informed by the Royal Australian College of General Practitioners 2018 OA clinical guidelines, an expert panel consensus or a review of the literature. To assess differences in the mean weight of attributes assigned by different stakeholder groups, the Holm-Šidák corrected Dunn’s pairwise comparison test was used. Fractional multinomial logit (FMNL) was used to evaluate the magnitude of association between the sociodemographic characteristics of the stakeholders against the eight attribute weights. Results: The DCE was completed by 178 people (mean [SD] age 53 [13] years; 114 female): 63 consumers, 79 providers, 24 policy-makers and 12 OA experts. The ranking of the attributes in decreasing order of relative importance (mean weights in parentheses) was: 1st - Rec (0.190), 2nd - Qua (0.176), 3rd - Eff (0.150), 4th - Dur (0.132), 5th - RSe (0.128), 6th - RMi (0.094), 7th - Cos (0.066), 8th - Acc (0.063). Dunn’s test detected significant differences for the Eff, RMi and Qua attributes (Table 1). To account for risk of non-response sample bias, the full-sample mean rank of the attributes was also calculated after adjusting the weight of each group sample to equivalence. After adjustment, the ranking of the attributes was the same except for the Dur and RSe attributes which swapped ranks for 4th and 5th places. Average partial effects of the FMNL model revealed an association between the five attribute weights Dur, Eff, Qua, Rec and RMi, and stakeholder group (Table 2). Specifically, health care providers, on average, place 4.3% more importance on Rec, whereas policy-makers place 4.9% more importance on Qua, and 4.7% less importance on Dur, relative to the other attributes and compared with consumers. OA experts, on average, place 3.4% less importance on RMi, relative to the other attributes and compared with providers, and compared with policy-makers, place 4.5% less importance on Eff, relative to the other attributes. The average partial effects were relatively small (no more than 5.7%) after accounting for other sociodemographic characteristics, corroborating the practically null difference in stakeholder group attribute weights compared to the full sample mean, as similarly observed in the between-group analysis. Conclusions: Stakeholders’ preferences for the attributes of OA interventions are independent of the stakeholder group they belong to and other sociodemographic characteristics. Although some statistically significant associations were detected, the differences were small, as reflected by their overall rankings, and are unlikely to be meaningful in practice. Our findings imply that the preferences of stakeholders responsible for providing, recommending or delivering OA interventions do not meaningfully differ from consumers’ preferences, and align with the evidence-based paradigm. This absence of differences among stakeholder groups implies that preferences are unlikely to be a barrier to implementing evidence-based OA interventions.Table 1Comparison of the stakeholder group mean attribute weights compared to the full-sample meanMean attribute weight (SD), RankGroup (N)Recommendation to use the intervention now (Rec)Quality of the evidence about the intervention (Qua)Effectiveness of the intervention (Eff)Duration of the intervention effect (Dur)Risk of serious harm (RSe)Risk of mild to moderate side-effects (RMi)Cost of the intervention (Cos)Accessibility to the intervention (Acc)Full sample (178)0.190 (0.064)10.0176 (0.064)20.150 (0.062)30.132 (0.73)40.128 (0.070)50.094 (0.060)60.066 (0.041)70.063 (0.055)8Consumers (63)0.185 (0.122)10.156∗∗ (0.097)20.138 (0.107)40.151 (0.156)30.133 (0.128)50.098 (0.116)60.073 (0.084)70.067 (0.110)8Weight difference†-0.005-0.020-0.0120.0190.0050.0040.0070.004Providers (79)0.195 (0.111)10.183 (0.089)20.156 (0.094)30.122 (0.084)50.122 (0.097)40.102* (0.083)60.058 (0.049)80.062 (0.073)7Weight difference†0.0050.0070.006-0.010-0.0060.008-0.008-0.001Policy-makers (24)0.185 (0.158)20.210∗ (0.217)10.172∗ (0.144)30.144 (0.14850.118 (0.142)40.072∗ (0.135)70.076 (0.111)60.053 (0.118)8Weight difference†-0.0050.0340.022-0.018-0.010-0.0220.010-0.010OA experts (12)0.204 (0.298)10.171 (0.249)20.133 (0140)50.134 (0.278)40.165 (0.361)30.069 (0.115)60.058 (0.092)80.066 (0.185)7Weight difference†0.014-0.005-0.0170.0020.037-0.025-0.0080.003Holm-Sidak corrected Dunn's *p<0.05, **p=0.001. †Group minus full sample attribute weight mean Open table in a new tab Table 2Average partial effects (APE) of the fractional multinomial logit modelAverage partial effects†Sociodemographic characteristicsRecommendation to use the intervention now (Rec)Quality of the evidence about the intervention (Qua)Effectiveness of the intervention (Eff)Duration of the intervention effect (Dur)Risk of serious harm (RSe)Risk of mild to moderate side-effects (RMi)Cost of the intervention (Cos)Accessibility to the intervention (Acc)Providers (ref: consumer)0.043∗∗ (0.150)0.016 (0.012)-0.003 (0.015)-0.042∗ (0.019)0.008 (0.018)0.014 (0.014)-0.010 (0.010)-0.009 (0.012)Policy-makers (ref: consumers)0.028 (0.016)0.049∗∗ (0.019)0.018 (0.016)-0.047∗∗ (0.017)-0.019 (0.019)-0.024 (0.018)0.010 (0.011)-0.012 (0.015)OA experts (ref: consumers)0.057 (0.024)0.007 (0.021)-0.029 (0.019)-0.030 (0.026)0.034 (0.026)-0.020 (0.017)-0.009 (0.012)-0.009 (0.017)Policy-makers (ref: providers)-0.014 (0.021)-0.033∗ (0.016)-0.019 (0.013)-0.006 (0.015)-0.011∗ (0.014)0.038∗ (0.017)-0.020∗ (0.008)-0.003 (0.013)OA experts (ref: providers)0.014 (0.021)-0.009 (0.022)-0.026 (0.014)-0.012 (0.022)0.042 (0.022)-0.034∗∗ (0.012)0.006 (0.009)0.000 (0.014)OA experts (ref: policy-makers)0.029 (0.023)-0.042 (0.024)-0.045∗∗ (0.017)-0.018 (0.025)0.052∗ (0.025)-0.005 (0.020)-0.020 (0.011)0.003 (0.018)Female (ref: Male)0.018 (0.012)-0.015 (0.010)-0.009 (0.010)-0.014 (0.013)0.009 (0.011)0.002 (0.009)0.002 (0.006)0.005 (0.018)Australian (ref: New Zealander)-0.278 (0.019)-0.012 (0.015)0.024 (0.015)0.025 (0.015)0.032 (0.019)-0.008 (0.023)-0.012 (0.014)-0.014 (0.015)DHB or MoH employee (ref: other employer)0.026∗ (0.013)-0.003 (0.011)-0.196 (0.013)-0.014 (0.016)-0.001 (0.014)0.018 (0.010)0.004 (0.007)-0.011 (0.009)Age (mean age=54)0.001∗ (0.001)-0.001 (0.000)-0.001 (0.000)-0.000 (0.001)0.000 (0.001)-0.000 (0.001)0.000 (0.000)0.000 (0.000)Work experience (years; mean years experience=16)0.000 (0.001)0.001 (0.001)-0.000 (0.000)-0.000 (0.001)0.000 (0.001)-0.001 (0.000)0.000 (0.000)0.000 (0.000)Standard errors are in parentheses. †Negative coefficents indicate less importance. *p<0.05, **p<0.01. DHB or MoH= District Health Board or Ministry of Health. Separate regressions were run for the Providers and Policy-makers reference categories. p<0.001 ‘goodness-of-fit’ Wald Chi-square for each regression, indicating at least one of the coefficients has a significant impact on the attributes. Open table in a new tab Holm-Sidak corrected Dunn's *p<0.05, **p=0.001. †Group minus full sample attribute weight mean Standard errors are in parentheses. †Negative coefficents indicate less importance. *p<0.05, **p<0.01. DHB or MoH= District Health Board or Ministry of Health. Separate regressions were run for the Providers and Policy-makers reference categories. p<0.001 ‘goodness-of-fit’ Wald Chi-square for each regression, indicating at least one of the coefficients has a significant impact on the attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkwww完成签到 ,获得积分10
刚刚
汉堡包应助李来仪采纳,获得10
1秒前
1秒前
饱满以松完成签到 ,获得积分10
1秒前
开心瓜瓜瓜完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
墨染发布了新的文献求助10
4秒前
0000完成签到,获得积分20
5秒前
5秒前
冰激凌UP发布了新的文献求助10
6秒前
机智念芹完成签到 ,获得积分10
6秒前
6秒前
7秒前
Raymond应助su采纳,获得10
7秒前
8秒前
朴素小鸟胃完成签到,获得积分10
8秒前
诗梦完成签到,获得积分10
8秒前
称心的紫萱完成签到,获得积分10
9秒前
9秒前
javalin发布了新的文献求助10
9秒前
10秒前
科研通AI5应助Xiaolei采纳,获得30
10秒前
10秒前
inRe完成签到,获得积分10
10秒前
10秒前
10秒前
叫滚滚完成签到,获得积分10
11秒前
内向秋寒发布了新的文献求助10
11秒前
12秒前
zhui发布了新的文献求助10
12秒前
xia完成签到,获得积分10
12秒前
拈花完成签到,获得积分10
12秒前
12秒前
深情安青应助欧阳小枫采纳,获得10
12秒前
刘芸芸发布了新的文献求助10
13秒前
AOI0504完成签到,获得积分10
13秒前
墨染完成签到,获得积分10
13秒前
薛厌完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794