双功能
氧气
克拉克电极
电极
析氧
材料科学
氧还原反应
电催化剂
化学
纳米技术
化学工程
催化作用
无机化学
电化学
有机化学
工程类
电解质
物理化学
作者
Nam‐In Kim,Young Jin,Tae Sup Yoo,Sung R. Choi,Rana Arslan Afzal,Taekjib Choi,Young‐Soo Seo,Kug‐Seung Lee,Jun Yeon Hwang,Woo Seok Choi,Sang Hoon Joo
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2018-06-01
卷期号:4 (6)
被引量:184
标识
DOI:10.1126/sciadv.aap9360
摘要
Highly active and durable bifunctional oxygen electrocatalysts have been of pivotal importance for renewable energy conversion and storage devices, such as unitized regenerative fuel cells and metal-air batteries. Perovskite-based oxygen electrocatalysts have emerged as promising nonprecious metal bifunctional electrocatalysts, yet their catalytic activity and stability still remain to be improved. We report a high-performance oxygen electrocatalyst based on a triple perovskite, Nd1.5Ba1.5CoFeMnO9-δ (NBCFM), which shows superior activity and durability for oxygen electrode reactions to single and double perovskites. When hybridized with nitrogen-doped reduced graphene oxide (N-rGO), the resulting NBCFM/N-rGO catalyst shows further boosted bifunctional oxygen electrode activity (0.698 V), which surpasses that of Pt/C (0.801 V) and Ir/C (0.769 V) catalysts and which, among the perovskite-based electrocatalysts, is the best activity reported to date. The superior catalytic performances of NBCFM could be correlated to its oxygen defect-rich structure, lower charge transfer resistance, and smaller hybridization strength between O 2p and Co 3d orbitals.
科研通智能强力驱动
Strongly Powered by AbleSci AI