控制理论(社会学)
粒子群优化
人工神经网络
计算机科学
稳健性(进化)
反馈线性化
非线性系统
线性化
计算
水准点(测量)
控制器(灌溉)
控制工程
控制(管理)
工程类
算法
人工智能
基因
物理
生物化学
生物
农学
化学
大地测量学
地理
量子力学
作者
Jimoh O. Pedro,Muhammed Dangor,Olurotimi Akintunde Dahunsi,M. Montaz Ali
标识
DOI:10.1016/j.asoc.2018.06.002
摘要
This paper proposes a nonlinear control approach using dynamic neural network-based input–output feedback linearization to resolve the inherent conflicting performance criteria for a full-car nonlinear electrohydraulic active vehicle suspension system. Particle swarm optimization is applied both for the dynamic neural network models' trainings and the computation of the controllers' parameters. The intelligent control scheme outperformed the passive vehicle suspension system and the benchmark particle swarm-optimized proportional+integral+derivative controller. Effectiveness and robustness of the proposed controller are demonstrated through simulations both in time- and frequency-domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI