Fluorescent Probes for the Visualization of Cell Viability

活力测定 荧光 细胞内 生物物理学 程序性细胞死亡 细胞 化学 细胞凋亡 膜电位 细胞膜 去极化 生物 细胞生物学 生物化学 物理 量子力学
作者
Minggang Tian,Yanyan Ma,Weiying Lin
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (8): 2147-2157 被引量:248
标识
DOI:10.1021/acs.accounts.9b00289
摘要

Monitoring cell viability is a crucial task essential for the fundamental studies in apoptosis, necrosis, and drug discovery. Cell apoptosis and necrosis are significant to maintain the cell population, and their abnormality can lead to severe diseases including cancer. During cell death, significant changes occur in the intracellular contents and physical properties, such as decrease of esterase activity, depolarization of the mitochondrial membrane potential (ΔΨm), increase of caspase content, dissipation of membrane asymmetry, and loss of membrane integrity. To detect cell viability, the fluorescent probes have been developed by taking advantage of these biological parameters and using various fluorescence mechanisms. These fluorescent probes can serve as powerful tools to facilitate the research in biology and pathology. In this Account, the representative examples of the fluorescent probes for cell viability during the past decades have been summarized and classified into five types based on the biological changes. The basic principle, design strategy, fluorescence mechanisms, and molecular construction of these fluorescent probes have been discussed. Furthermore, the intrinsic characteristics and merits of these probes have been illustrated. Particularly, this Account describes our recent works for the design and synthesis of the fluorescent probes to detect cell viability in the dual-color and reversible modes. The dual-color and reversible fluorescent probes are highlighted owing to their unique benefits in accurate and dynamic detection of cell viability. In general, the dual-color fluorescent probes were constructed based on the loss of esterase activity during cell death. Excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) process were exploited for the probe design. The construction of such dual-color probes were realized by the acetate of the phenyl group on fluorophores. Esterases in healthy cells hydrolyze the acetate and bring a spectral shift to the probes. Moreover, reversible fluorescent probes for cell viability were designed based on the depolarization of ΔΨm, with relocalization properties dependent on ΔΨm. The probes target mitochondria in healthy cells with high ΔΨm, while they are relocalized into the nucleus in unhealthy cells with depolarized ΔΨm. As ΔΨm is reversibly changed according to the cell viability, these probes reversibly detect cell viability. The reversible and simultaneously dual-color fluorescent probes were developed based on the relocalization mode and aggregation-induced emission shift. The probes target mitochondria to form aggregates with deep-red emission, while they migrate into the nucleus to present in monomers with green fluorescence. In this manner, the probes enable dual-color and reversible detection of cell viability. Fluorescent probes for cell viability based on sensing the membrane integrity, caspase activity, and membrane symmetry are also presented. High-polarity and large-size fluorescent probes impermeable to the intact lipid bilayer selectively target apoptotic cells with a destructive plasma membrane. Fluorescent probes sensing caspases in a turn-on manner exclusively light up apoptotic cells with caspase expression. Membrane-impermeable probes with high affinity to phosphatidylserine (PS) specifically stain the plasma membrane of dead cells, since PS flip-flops to the outer leaflet of the membrane during cell death. In summary, this Account illustrates the basic principles, design strategies, characteristics, and advantages of the fluorescent probes for cell viability, and it highlights the dual-color and reversible probes, which can promote the development of fluorescent probes, apoptosis studies, drug discovery, and other relative areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
执着秋白发布了新的文献求助10
2秒前
wanzhao发布了新的文献求助30
5秒前
哈哈哈发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
8秒前
11秒前
11秒前
13秒前
清晨牛完成签到,获得积分10
15秒前
科研通AI6应助比奇堡力工采纳,获得10
16秒前
16秒前
落后的嚓茶完成签到,获得积分20
16秒前
哈哈哈完成签到,获得积分20
17秒前
pose关注了科研通微信公众号
18秒前
汪蔓蔓完成签到 ,获得积分10
18秒前
哈罗发布了新的文献求助10
18秒前
jiaheyuan发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
隐形曼青应助yyx164采纳,获得10
19秒前
Revision完成签到,获得积分10
19秒前
科研通AI6应助李珅玥采纳,获得30
19秒前
20秒前
20秒前
gfjh完成签到,获得积分10
21秒前
22秒前
舒适傲白发布了新的文献求助10
22秒前
水泥酱发布了新的文献求助100
22秒前
浮游应助陶醉采纳,获得10
23秒前
薄荷味完成签到,获得积分10
23秒前
L1q完成签到,获得积分10
23秒前
无极微光应助舒适的半芹采纳,获得20
23秒前
小小Li完成签到,获得积分10
24秒前
马老师发布了新的文献求助10
24秒前
执着秋白完成签到,获得积分10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039