热弹性阻尼
消散
边值问题
偏微分方程
波动方程
边界(拓扑)
热方程
数学分析
声波
数学
物理
经典力学
机械
声学
热的
热力学
作者
George Avalos,Pelin G. Geredeli
标识
DOI:10.1002/mana.201700489
摘要
In this study we consider a coupled system of partial differential equations (PDE's) which describes a certain structural acoustics interaction. One component of this PDE system is a wave equation, which serves to model the interior acoustic wave medium within a given three dimensional chamber Ω. This acoustic wave equation is coupled on a boundary interface Γ0 to a two dimensional system of thermoelasticity: this thermoelastic PDE is composed in part of a structural beam or plate equation, which governs the vibrations of flexible wall portion Γ0 of the chamber Ω. Moreover, this elastic dynamics is coupled to a heat equation which also evolves on Γ0, and which imparts a thermal damping onto the entire structural acoustic system. As we said, the interaction between the wave and thermoelastic PDE components takes place on the boundary interface Γ0, and involves coupling boundary terms which are above the level of finite energy. We analyze the stability properties of this coupled structural acoustics PDE model, in the absence of any additive feedback dissipation on the hard walls Γ1 of the boundary . Under a certain geometric assumption on Γ1, an assumption which has appeared in the literature in connection with structural acoustic flow, and which allows for the invocation of a recently derived microlocal boundary trace estimate, we show that classical solutions of this thermally damped structural acoustics PDE decay uniformly to zero, with a rational rate of decay.
科研通智能强力驱动
Strongly Powered by AbleSci AI