Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

移动边缘计算 计算机科学 服务器 计算卸载 资源配置 分布式计算 最优化问题 启发式 云计算 基站 计算机网络 无线网络 边缘计算 无线 算法 电信 操作系统 人工智能
作者
Tuyen X. Tran,Dario Pompili
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 856-868 被引量:882
标识
DOI:10.1109/tvt.2018.2881191
摘要

Mobile-edge computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this paper, an MEC enabled multi-cell wireless network is considered where each base station (BS) is equipped with a MEC server that assists mobile users in executing computation-intensive tasks via task offloading. The problem of joint task offloading and resource allocation is studied in order to maximize the users' task offloading gains, which is measured by a weighted sum of reductions in task completion time and energy consumption. The considered problem is formulated as a mixed integer nonlinear program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the combinatorial nature of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, we propose to decompose the original problem into a resource allocation (RA) problem with fixed task offloading decision and a task offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韶安萱发布了新的文献求助10
2秒前
2秒前
Metrix发布了新的文献求助10
2秒前
无花果应助Abi采纳,获得10
2秒前
2秒前
科研通AI5应助brazenness采纳,获得10
3秒前
4秒前
以默发布了新的文献求助10
4秒前
VDC应助经验丰富的菜狗采纳,获得30
4秒前
tmxx发布了新的文献求助10
5秒前
orixero应助DT采纳,获得10
5秒前
7秒前
小星云发布了新的文献求助10
7秒前
冷傲机器猫完成签到,获得积分10
7秒前
Marvin42完成签到,获得积分10
8秒前
8秒前
独钓寒江雪完成签到 ,获得积分10
8秒前
奶龙淦贝利亚完成签到,获得积分10
9秒前
李健的小迷弟应助阳仔采纳,获得10
9秒前
星星月完成签到 ,获得积分10
9秒前
10秒前
10秒前
海中有月发布了新的文献求助10
11秒前
13秒前
13秒前
brazenness完成签到,获得积分10
13秒前
汐流年完成签到,获得积分10
14秒前
15秒前
yulinn发布了新的文献求助50
15秒前
16秒前
16秒前
17秒前
18秒前
小马甲应助孙扬采纳,获得10
18秒前
大模型应助江峰采纳,获得10
18秒前
笨笨凡松发布了新的文献求助10
19秒前
sby19完成签到 ,获得积分10
20秒前
21秒前
六六发布了新的文献求助10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679