Semigroups related to additive and multiplicative, free and Boolean convolutions

数学 可分性规则 乘法函数 半群 无限可除性 双射 度量(数据仓库) 概率测度 卷积(计算机科学) 离散数学 猜想 组合数学 数学分析 数据库 机器学习 计算机科学 人工神经网络
作者
Octavio Arizmendi,Tadashi Hasebe
出处
期刊:Studia Mathematica [Institute of Mathematics, Polish Academy of Sciences]
卷期号:215 (2): 157-185 被引量:15
标识
DOI:10.4064/sm215-2-5
摘要

Belinschi and Nica introduced a composition semigroup on the set of probability measures. Using this semigroup, they introduced a free divisibility indicator, from which one can know whether a probability measure is freely infinitely divisible or not. In this paper we further investigate this indicator, introduce a multiplicative version of it and are able to show many properties. Specifically, on the first half of the paper, we calculate how the indicator changes with respect to free and Boolean powers; we prove that free and Boolean 1/2-stable laws have free divisibility indicators equal to infinity; we derive an upper bound of the indicator in terms of Jacobi parameters. This upper bound is achieved only by free Meixner distributions. We also prove Bozejko's conjecture which says the Boolean power of a probability measure mu by 0 < t < 1 is freely infinitely divisible if mu is so. In the other half of this paper, we introduce an analogous composition semigroup for multiplicative convolutions and define free divisibility indicators for these convolutions. Moreover, we prove that a probability measure on the unit circle is freely infinitely divisible concerning the multiplicative free convolution if and only if the indicator is not less than one. We also prove how the multiplicative divisibility indicator changes under free and Boolean powers and then the multiplicative analogue of Bozejko's conjecture. We include an appendix, where the Cauchy distributions and point measures are shown to be the only fixed points of the Boolean-to-free Bercovici-Pata bijection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助joshua采纳,获得10
刚刚
刚刚
苻醉山发布了新的文献求助10
1秒前
1秒前
summer完成签到,获得积分10
1秒前
不见木棉完成签到,获得积分10
2秒前
英姑应助23xyke采纳,获得10
2秒前
英姑应助成成采纳,获得10
2秒前
豆子完成签到,获得积分10
2秒前
田様应助乐正颦采纳,获得10
2秒前
aixuexixiao完成签到,获得积分10
3秒前
优秀白曼发布了新的文献求助10
4秒前
李健应助许若南采纳,获得10
4秒前
5秒前
FERN0826发布了新的文献求助10
5秒前
5秒前
6秒前
朱猪侠发布了新的文献求助10
7秒前
科目三应助高高乐天采纳,获得10
7秒前
Three完成签到,获得积分10
8秒前
9秒前
9秒前
AAA完成签到,获得积分10
9秒前
fdpb完成签到,获得积分10
9秒前
9秒前
张才豪发布了新的文献求助10
9秒前
小杜老师发布了新的文献求助10
9秒前
西柚完成签到,获得积分10
10秒前
1391451653完成签到,获得积分10
10秒前
某某发布了新的文献求助10
10秒前
10秒前
Orange应助科研废柴采纳,获得10
10秒前
ChenyuTian完成签到 ,获得积分10
11秒前
13秒前
skxz发布了新的文献求助10
13秒前
13秒前
Ting222完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160172
求助须知:如何正确求助?哪些是违规求助? 2811172
关于积分的说明 7891237
捐赠科研通 2470284
什么是DOI,文献DOI怎么找? 1315398
科研通“疑难数据库(出版商)”最低求助积分说明 630828
版权声明 602022