XGBoost Model for Chronic Kidney Disease Diagnosis

肾脏疾病 特征选择 灵敏度(控制系统) 计算机科学 人工智能 背景(考古学) 人口 机器学习 可靠性(半导体) 选择(遗传算法) 数据挖掘 医学 地理 工程类 内科学 环境卫生 物理 功率(物理) 考古 量子力学 电子工程
作者
Adeola Ogunleye,Qing‐Guo Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (6): 2131-2140 被引量:647
标识
DOI:10.1109/tcbb.2019.2911071
摘要

Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钙钛矿-1完成签到,获得积分10
刚刚
Jovid完成签到,获得积分10
1秒前
hunter完成签到,获得积分10
2秒前
wanci应助东东西西采纳,获得10
2秒前
pl656完成签到,获得积分10
3秒前
霸气鞯完成签到 ,获得积分10
3秒前
Even_YE完成签到,获得积分10
4秒前
tzy完成签到,获得积分10
4秒前
勤奋的烨霖完成签到,获得积分10
4秒前
4秒前
大胆的忆安完成签到 ,获得积分10
4秒前
5秒前
温暖的德地完成签到,获得积分10
6秒前
高兴绿柳完成签到 ,获得积分10
6秒前
zhu96114748完成签到,获得积分10
6秒前
殷馨完成签到,获得积分10
6秒前
小马甲应助自觉紫山采纳,获得10
6秒前
qww完成签到,获得积分20
6秒前
自信鞯完成签到,获得积分10
7秒前
刘丰铭完成签到,获得积分10
8秒前
zhangnan完成签到,获得积分10
8秒前
milalala完成签到 ,获得积分10
9秒前
9秒前
9秒前
温柔的夜柳完成签到,获得积分10
9秒前
传奇3应助Labubu采纳,获得10
10秒前
sherry221发布了新的文献求助10
10秒前
称心的语梦完成签到,获得积分10
11秒前
Jerry完成签到 ,获得积分10
11秒前
11秒前
12秒前
Dong完成签到,获得积分10
12秒前
Ricardo完成签到,获得积分10
12秒前
fzh完成签到,获得积分10
12秒前
爆米花应助long采纳,获得10
13秒前
双峰山发布了新的文献求助10
13秒前
Dany完成签到,获得积分10
13秒前
13秒前
华仔应助Wwt采纳,获得10
13秒前
pxy完成签到,获得积分20
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235025
求助须知:如何正确求助?哪些是违规求助? 4403456
关于积分的说明 13702074
捐赠科研通 4270819
什么是DOI,文献DOI怎么找? 2343784
邀请新用户注册赠送积分活动 1340961
关于科研通互助平台的介绍 1298338