A Dynamic Failure Rate Prediction Method for Chemical Process System under Insufficient Historical Data

威布尔分布 故障率 过程(计算) 断层(地质) 人工神经网络 计算机科学 可靠性工程 工程类 统计 数学 人工智能 操作系统 地质学 地震学
作者
Chenyang Li,Xiaofeng Song,Jinghong Wang,Youran Zhi,Zhirong Wang,Juncheng Jiang
出处
期刊:International Journal of Industrial Engineering-theory Applications and Practice [University of Texas at El Paso]
卷期号:26 (2) 被引量:2
链接
摘要

Because of large number of equipments, long pipelines and complex process, the chemical process system is especially prone to accidents due to component defects and equipment failures, making it tough challenging to guarantee process security. According to the relationship between process state parameters and fault conditions in chemical process, and taking into account that in some circumstance the historical fault data is insufficient to perform statistical analysis, this paper proposes a method to predict the dynamic failure rate of chemical process system based on BP (back-propagation) neural network and two parameter Weibull distribution. First, the BP neural network is applied to expand the limited amount of data of process state parameters and determine the fault states. Then combining the expanding data set, some mathematical methods are applied to determine the parameters of Weibull distribution and the failure rate function, based on which the mean failure rate can be calculated for each phase. A liquid chlorine storage system of a chemical plant is introduced to demonstrate the proposed method. Compared with the traditional method and the method that merely considers known limited amount of fault data into two-parameter Weibull distribution, the results show that the failure rate of the liquid chlorine storage system calculated by the proposed method is more consistent with the actual situation, especially more closer to the actual failure rate of the system in the early stage. Moreover, based on the expansion of historical data, this method can achieve a continuous dynamic prediction for future failure rate and failure time points, which has practical meaning for the prevision and dissolving of accident risk in chemical plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
----发布了新的文献求助10
1秒前
030213lzy完成签到,获得积分10
2秒前
3秒前
djbj2022发布了新的文献求助10
3秒前
4秒前
XHT发布了新的文献求助10
4秒前
4秒前
lpc驳回了充电宝应助
6秒前
6秒前
ChatGPT完成签到,获得积分10
6秒前
Claire完成签到 ,获得积分10
6秒前
7秒前
隔壁的小民完成签到,获得积分10
8秒前
9秒前
Ming完成签到,获得积分10
10秒前
Lynn发布了新的文献求助10
11秒前
搬砖发布了新的文献求助10
11秒前
99giddens应助坚定的怜晴采纳,获得30
11秒前
LaiZiwen发布了新的文献求助10
12秒前
CipherSage应助102755采纳,获得10
12秒前
科研通AI6应助超帅的尔珍采纳,获得10
13秒前
YWK完成签到,获得积分10
14秒前
lizhoukan1完成签到,获得积分10
14秒前
15秒前
大模型应助LYi采纳,获得10
15秒前
16秒前
bramble应助陌路采纳,获得20
17秒前
17秒前
斯文败类应助Lynn采纳,获得10
18秒前
科研通AI2S应助Hideyuki采纳,获得10
18秒前
跳跃巨人发布了新的文献求助10
18秒前
UU发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
akakns发布了新的文献求助10
21秒前
21秒前
kubi辣辣哭发布了新的文献求助10
21秒前
22秒前
rklv完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543706
关于积分的说明 14188806
捐赠科研通 4462148
什么是DOI,文献DOI怎么找? 2446437
邀请新用户注册赠送积分活动 1437811
关于科研通互助平台的介绍 1414523