A Dynamic Failure Rate Prediction Method for Chemical Process System under Insufficient Historical Data

威布尔分布 故障率 过程(计算) 断层(地质) 人工神经网络 计算机科学 可靠性工程 工程类 统计 数学 人工智能 操作系统 地质学 地震学
作者
Chenyang Li,Xiaofeng Song,Jinghong Wang,Youran Zhi,Zhirong Wang,Juncheng Jiang
出处
期刊:International Journal of Industrial Engineering-theory Applications and Practice [University of Texas at El Paso]
卷期号:26 (2) 被引量:2
链接
摘要

Because of large number of equipments, long pipelines and complex process, the chemical process system is especially prone to accidents due to component defects and equipment failures, making it tough challenging to guarantee process security. According to the relationship between process state parameters and fault conditions in chemical process, and taking into account that in some circumstance the historical fault data is insufficient to perform statistical analysis, this paper proposes a method to predict the dynamic failure rate of chemical process system based on BP (back-propagation) neural network and two parameter Weibull distribution. First, the BP neural network is applied to expand the limited amount of data of process state parameters and determine the fault states. Then combining the expanding data set, some mathematical methods are applied to determine the parameters of Weibull distribution and the failure rate function, based on which the mean failure rate can be calculated for each phase. A liquid chlorine storage system of a chemical plant is introduced to demonstrate the proposed method. Compared with the traditional method and the method that merely considers known limited amount of fault data into two-parameter Weibull distribution, the results show that the failure rate of the liquid chlorine storage system calculated by the proposed method is more consistent with the actual situation, especially more closer to the actual failure rate of the system in the early stage. Moreover, based on the expansion of historical data, this method can achieve a continuous dynamic prediction for future failure rate and failure time points, which has practical meaning for the prevision and dissolving of accident risk in chemical plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助小航采纳,获得10
刚刚
刚刚
1秒前
1秒前
ED应助是赤赤呀采纳,获得10
1秒前
2秒前
3秒前
魔鬼水果烤辣椒完成签到,获得积分10
3秒前
3秒前
慕青应助章鱼哥采纳,获得10
3秒前
lfjh完成签到,获得积分10
4秒前
CAOHOU应助00采纳,获得10
5秒前
阿欣完成签到,获得积分20
6秒前
6秒前
充电宝应助淡蓝蓝蓝采纳,获得10
7秒前
djiwisksk66应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
Akim应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
思源应助科研通管家采纳,获得10
8秒前
foceman发布了新的文献求助10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
CAOHOU应助黑黑黑采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得20
8秒前
sisthan发布了新的文献求助10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Water应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126