A Game Theory Based Efficient Computation Offloading in an UAV Network

计算卸载 计算机科学 分布式计算 计算 移动设备 服务器 边缘计算 移动边缘计算 能源消耗 GSM演进的增强数据速率 纳什均衡 博弈论 数学优化 计算机网络 人工智能 操作系统 工程类 数学 算法 电气工程 经济 微观经济学
作者
Mohamed-Ayoub Messous,Sidi‐Mohammed Senouci,Hichem Sedjelmaci,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 4964-4974 被引量:148
标识
DOI:10.1109/tvt.2019.2902318
摘要

Recently, solutions based on mobile edge computing paradigm have been widely discussed in academia and industry. This paradigm offers solutions to address limitations, in terms of battery lifetime and processing power, of mobile and constrained devices. Despite the ever-increasing capabilities of these devices, resource requirements of applications can often transcend what is available within a single device. Offloading intensive computation tasks to a distant server can help applications reach their desired performances. In this work, we tackle the problem of offloading heavy computation tasks of unmanned aerial vehicles (UAVs) while achieving the best possible tradeoff between energy consumption, time delay, and computation cost. We focus on a scenario of a fleet of small UAVs performing an exploration mission. During their mission, these constrained devices have to carry-out highly intensive computation tasks such as pattern recognition and video preprocessing. We formulate the problem using a non-cooperative theoretical game with N players and three pure strategies. We provide a comprehensive proof for the existence of a Nash equilibrium and implement accordingly a distributed algorithm that converges to such an equilibrium. Extensive simulations are performed in order to provide thorough results and assess the performances of the approach compared to three other models. Results show that our algorithm outperforms all the three approaches. Our approach achieved in average about 19%, 58%, and 55% better results compared to local computing, offloading to the edge server, and offloading to base station, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DIngqin完成签到,获得积分10
刚刚
iKYy完成签到,获得积分20
刚刚
刚刚
FashionBoy应助酷炫的冰蓝采纳,获得10
刚刚
ohh发布了新的文献求助10
1秒前
1秒前
qin发布了新的文献求助10
1秒前
TTZ完成签到 ,获得积分10
2秒前
槿萱完成签到,获得积分10
2秒前
3秒前
乐乐应助dw采纳,获得10
4秒前
凌中豆发布了新的文献求助50
4秒前
CodeCraft应助达达利亚采纳,获得10
4秒前
云栈出谷发布了新的文献求助10
4秒前
4秒前
wly完成签到,获得积分10
5秒前
若尘发布了新的文献求助10
5秒前
5秒前
6秒前
李审绥完成签到 ,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
鲁姗完成签到,获得积分10
7秒前
落水无波完成签到,获得积分10
7秒前
zc完成签到,获得积分10
8秒前
zjccjz完成签到,获得积分10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Sunn发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
Owen应助一一采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
hehe完成签到,获得积分20
11秒前
阿迪发布了新的文献求助10
11秒前
源源发布了新的文献求助20
11秒前
Akim应助ttt采纳,获得10
12秒前
奋斗的亦绿完成签到,获得积分10
12秒前
lct发布了新的文献求助30
12秒前
天暗星发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503