A Game Theory Based Efficient Computation Offloading in an UAV Network

计算卸载 计算机科学 分布式计算 计算 移动设备 服务器 边缘计算 移动边缘计算 能源消耗 GSM演进的增强数据速率 纳什均衡 博弈论 数学优化 计算机网络 人工智能 操作系统 工程类 经济 微观经济学 电气工程 数学 算法
作者
Mohamed-Ayoub Messous,Sidi‐Mohammed Senouci,Hichem Sedjelmaci,Soumaya Cherkaoui
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 4964-4974 被引量:148
标识
DOI:10.1109/tvt.2019.2902318
摘要

Recently, solutions based on mobile edge computing paradigm have been widely discussed in academia and industry. This paradigm offers solutions to address limitations, in terms of battery lifetime and processing power, of mobile and constrained devices. Despite the ever-increasing capabilities of these devices, resource requirements of applications can often transcend what is available within a single device. Offloading intensive computation tasks to a distant server can help applications reach their desired performances. In this work, we tackle the problem of offloading heavy computation tasks of unmanned aerial vehicles (UAVs) while achieving the best possible tradeoff between energy consumption, time delay, and computation cost. We focus on a scenario of a fleet of small UAVs performing an exploration mission. During their mission, these constrained devices have to carry-out highly intensive computation tasks such as pattern recognition and video preprocessing. We formulate the problem using a non-cooperative theoretical game with N players and three pure strategies. We provide a comprehensive proof for the existence of a Nash equilibrium and implement accordingly a distributed algorithm that converges to such an equilibrium. Extensive simulations are performed in order to provide thorough results and assess the performances of the approach compared to three other models. Results show that our algorithm outperforms all the three approaches. Our approach achieved in average about 19%, 58%, and 55% better results compared to local computing, offloading to the edge server, and offloading to base station, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh完成签到,获得积分20
刚刚
迟大猫应助周舟采纳,获得10
刚刚
刚刚
1秒前
1秒前
SLS完成签到,获得积分10
2秒前
2秒前
2秒前
swsx1317发布了新的文献求助10
3秒前
4秒前
kilig应助hohokuz采纳,获得10
4秒前
LKSkywalker完成签到,获得积分10
4秒前
4秒前
田様应助大晨采纳,获得10
4秒前
BWZ发布了新的文献求助10
4秒前
6秒前
西子阳发布了新的文献求助10
6秒前
6秒前
下课了吧发布了新的文献求助10
6秒前
6秒前
朴实山兰完成签到,获得积分10
6秒前
6秒前
7秒前
啊嚯发布了新的文献求助10
7秒前
草上飞完成签到 ,获得积分10
7秒前
小罗飞飞飞完成签到 ,获得积分10
7秒前
7秒前
L龙完成签到,获得积分20
8秒前
雯雯完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
科研通AI5应助LZZ采纳,获得10
8秒前
情怀应助WxChen采纳,获得10
8秒前
Akim应助WxChen采纳,获得10
9秒前
深情安青应助WxChen采纳,获得10
9秒前
请叫我风吹麦浪应助WxChen采纳,获得10
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762