杠杆(统计)
计算机科学
对抗制
生成语法
稳健性(进化)
生成对抗网络
机器学习
人工智能
构造(python库)
集合(抽象数据类型)
合成数据
数据挖掘
分析
数据建模
深度学习
计算机网络
数据库
基因
生物化学
化学
程序设计语言
作者
Jon J. Aho,Alexander W. Witt,Carter B. F. Casey,Nirav Trivedi,Venkatesh Ramaswamy
标识
DOI:10.1109/milcom.2018.8599782
摘要
In this paper, we provide a novel approach that uses a generative adversarial network to produce synthetic network traffic. The intent is to leverage this synthetic data to improve the robustness of machine learning algorithms that perform analysis on communication networks. In our experimental results, we demonstrate that a generative adversarial network can construct samples of network traffic that are statistically similar to an original set of reference samples. Additionally, we provide insight into the performance of our approach when evaluating different varieties of generative adversarial networks for their ability to produce and converge to realistic output.
科研通智能强力驱动
Strongly Powered by AbleSci AI