Extracting Features of Entertainment Products: A Guided Latent Dirichlet Allocation Approach Informed by the Psychology of Media Consumption

潜在Dirichlet分配 游戏娱乐 计算机科学 主题模型 消费(社会学) 消费者行为 集合(抽象数据类型) 人工智能 心理学 数据科学 机器学习 社会心理学 社会学 社会科学 程序设计语言 艺术 视觉艺术
作者
Olivier Toubia,Garud Iyengar,Renée Bunnell,Alain Lemaire
出处
期刊:Journal of Marketing Research [SAGE]
卷期号:56 (1): 18-36 被引量:108
标识
DOI:10.1177/0022243718820559
摘要

The authors propose a quantitative approach for describing entertainment products, in a way that allows for improving the predictive performance of consumer choice models for these products. Their approach is based on the media psychology literature, which suggests that people’s consumption of entertainment products is influenced by the psychological themes featured in these products. They classify psychological themes on the basis of the “character strengths” taxonomy from the positive psychology literature (Peterson and Seligman 2004). They develop a natural language processing tool, guided latent Dirichlet allocation (LDA), that automatically extracts a set of features of entertainment products from their descriptions. Guided LDA is flexible enough to allow features to be informed by psychological themes while allowing other relevant dimensions to emerge. The authors apply this tool to movies and show that guided LDA features help better predict movie-watching behavior at the individual level. They find this result with both award-winning movies and blockbuster movies. They illustrate the potential of the proposed approach in pure content-based predictive models of consumer behavior, as well as in hybrid predictive models that combine content-based models with collaborative filtering. They also show that guided LDA can improve the performance of models that predict aggregate outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达萧发布了新的文献求助10
1秒前
尊敬的惠应助酷炫小笼包采纳,获得10
2秒前
2秒前
万能图书馆应助歪歪吸采纳,获得10
5秒前
不吃鱼发布了新的文献求助10
5秒前
钨昂汪发布了新的文献求助10
6秒前
Hello应助xmhxpz采纳,获得10
6秒前
英俊的铭应助nns采纳,获得10
8秒前
猪猪hero发布了新的文献求助10
9秒前
Lynn应助戊子采纳,获得10
10秒前
10秒前
11秒前
12秒前
Lynn应助陈昭琼采纳,获得10
13秒前
纯子完成签到,获得积分10
13秒前
阔达萧完成签到,获得积分10
15秒前
汉堡包应助酷炫小笼包采纳,获得10
15秒前
梁梁完成签到,获得积分20
16秒前
16秒前
纯子发布了新的文献求助10
16秒前
小王发布了新的文献求助10
17秒前
彭于晏应助Wyu采纳,获得10
17秒前
Polymer72应助sukasuka采纳,获得10
18秒前
充电宝应助歪歪吸采纳,获得10
19秒前
19秒前
20秒前
dandan发布了新的文献求助100
22秒前
11发布了新的文献求助10
22秒前
22秒前
姽婳wy发布了新的文献求助10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
24秒前
Owen应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397025
求助须知:如何正确求助?哪些是违规求助? 3006374
关于积分的说明 8820911
捐赠科研通 2693511
什么是DOI,文献DOI怎么找? 1475361
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675703