接头(建筑物)
计算机科学
姿势
图形模型
人工智能
卷积神经网络
估计
机器学习
培训(气象学)
模式识别(心理学)
工程类
地理
气象学
建筑工程
系统工程
作者
Jonathan Tompson,Arjun Jain,Yann LeCun,Christoph Bregler
出处
期刊:Cornell University - arXiv
日期:2014-01-01
被引量:493
标识
DOI:10.48550/arxiv.1406.2984
摘要
This paper proposes a new hybrid architecture that consists of a deep Convolutional Network and a Markov Random Field. We show how this architecture is successfully applied to the challenging problem of articulated human pose estimation in monocular images. The architecture can exploit structural domain constraints such as geometric relationships between body joint locations. We show that joint training of these two model paradigms improves performance and allows us to significantly outperform existing state-of-the-art techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI